Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425

Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

Spatial Distribution of Pine Forests in the Caucasus. С. 92-111

Версия для печати

Pshegusov R.Kh., Chadaeva V.A.

Complete text of the article:

Download article (pdf, 4.5MB )

UDС

630*181.1:630*181.41

DOI:

10.37482/0536-1036-2025-2-92-111

Abstract

An effective approach to studying the factors of distribution of forest-forming species of the Caucasus in conditions of orographic inaccessibility of mountainous areas is a combination of the use of geoinformation systems and the theory of ecological niche in SDM distribution models. Many aspects of this approach remain controversial, including the choice of ecological predictors, the collinearity of variables, the scale effect of the study area, the formalization of biotic factors and the dispersal capacity of species in models. The aim of this study has been to identify patterns of spatial distribution of pine (Pinus sylvestris L.) forests of the Caucasus depending on the area of the analyzed territory. To formalize the biotic factor of pine forest distribution, a method has been proposed for including probability distribution maps of the detection of competing species (birch (Betula pendula Roth and B. litwinowii Doluch.) forests) in the SDM model of P. sylvestris as biotic layers. The factor of pine dispersal capacity (accessibility of territories) has been formalized through the distance from the optimal habitats of the species (areas with a sustainability threshold of 0.8), where the probability of its detection remains above 0.5. A comparative analysis of different sets of abiotic predictors with and without multicollinear variables have revealed the advantages of the model based on the ENVIREM (Environmental Rasters for Ecological Modeling) dataset limited by the VIF (Variance Inflation Factor) test. At the local level (Central Caucasus), the main predictor of the location of pine forests is the accessibility of territories of 0–3 km from optimal habitats (the contribution to the model is about 72 %). At the regional level (Caucasus as a whole), interspecific competition is of great importance (the contribution to the model is about 37 %). The least significant factors in the distribution of pine forests are the main abiotic factors (orography of the area and the temperature and water regime of the driest quarter), the equity particlpation of which in the final models does not exceed 16 %. The species has been found to have a potentially wide distribution in the Caucasus in areas with diverse climatic and orographic conditions (about 21 thousand km2). The centre of the Caucasian pine range is predicted to be in the Central Caucasus (96 % of the optimal habitat area).

Authors

Rustam Kh. Pshegusov*, Doctor of Biology, Head of Laboratory; ResearcherID: I-8766-2012, ORCID: https://orcid.org/0000-0002-6204-2690
Victoria A. Chadaeva, Doctor of Biology, Head of Laboratory; ResearcherID: AAF-3095-2019, ORCID: https://orcid.org/0000-0002-0788-1395


Affiliation

Tembotov Institute of Ecology of Mountain Territories of the Russian Academy of Sciences, ul. I. Armand, 37a, Nalchik, 360051, Russian Federation; p_rustem@inbox.ru*, v_chadayeva@mail.ru

Keywords

Pinus sylvestris, distribution modelling, BAM concept, spatial scale, Maxent, the Caucasus

For citation

Pshegusov R.Kh., Chadaeva V.A. Spatial Distribution of Pine Forests in the Caucasus. Lesnoy Zhurnal = Russian Forestry Journal, 2025, no. 2, pp. 92–111. (In Russ.). https://doi.org/10.37482/0536-1036-2025-2-92-111

References

  1. Akatov V.V., Akatov P.V., Majorov S.V. Trends in Altitude Area of Nordmann Fir in the Western Caucasus (Basin of Belaya River) in the Relation with the Global Warming Issue. Izvestiya Rossiiskoi Akademii Nauk. Seriya: Geograficheskaya, 2013, no. 2, pp. 104–114. (In Russ.).
  2. Bebia S.M. Forest Resources of the Caucasian Black Sea Coast: Problems and Prospects of Rational Use. Sibirskij lesnoj zhurnal = Siberian Journal of Forest Science, 2015, no. 1, pp. 9–24. (In Russ.).
  3. Galushko A.I. Main Refugia and Relics in the Highland Flora of the Western Part of the Central Caucasus. Problems of Botany. Highland Flora and Its Development. Leningrad, Nauka Publ., 1974, vol. 12, pp. 19–26. (In Russ.).
  4. Gornov A.V., Gornova M.V., Tikhonova E.V., Shevchenko N.E., Kuznetsova A.I., Ruchinskaya E.V., Tebenkova D.N. Population-Based Assessment of Succession Stage of Mixed Forests in European Part of Russia. Lesovedenie = Russian Journal of Forest Science, 2018, no. 4, pp. 243–257. (In Russ.). https://doi.org/10.1134/S0024114818040083
  5. Ermakov N.B., Abdurakhmanova Z.I., Potapenko I.L. To the Problem of Syntaxonomy of Pine Forests (Pinus sylvestris var. hamata) with the Participation of Boreal Floristic Elements in Dagestan (North Caucasus). Turczaninowia, 2019, vol. 22, no. 4, pp. 154–171. (In Russ.). https://doi.org/10.14258/turczaninowia.22.4.16
  6. Zhuchkova V.K., Rakovskaya E.M. Methods of Complex Physical and Geographical Research. Moscow, Akademiya Publ., 2004. 368 p. (In Russ.).
  7. Komarova A.F., Kuksina N.V., Zudkin A.G. Mapping of the North-West Caucasus Dark-Coniferous Forests with Neural Network Approach. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, vol. 13, no. 5, pp. 157–166. (In Russ.). https://doi.org/10.21046/2070-7401-2016-13-5-157-166
  8. Milkov F.N. Physical Geography of the USSR. General Overview. European Part of the USSR. The Caucasus. Moscow, Mysl’ Publ., 1976. 448 p. (In Russ.).
  9. Petrova I.V., Sannikov S.N., Tembotova F.A., Sannikova N.S., Farzaliev V.S., Mollaeva M.Z., Egorov E.V. Genogeography of Populations of Pinus sylvestris L. of the Greater Caucasus and Crimea. Ekologiya = Russian Journal of Ecology, 2017, no. 6, pp. 431–439. (In Russ.). https://doi.org/10.7868/S036705971706004X
  10. Pukinskaya M.Yu., Kessel D.S., Shchukina K.V. Drying of Fir-Spruce Forests of the Teberda Nature Reserve. Botanicheskij zhurnal, 2019, vol. 104, no. 3, pp. 337–362. (In Russ.). https://doi.org/10.1134/S0006813619030062
  11. Rakhmatullina I.R., Rakhmatullin Z.Z., Latypov E.R. Simulation of Growing Conditions and Analysis of Factors Contribution in Formation of High Bonitet Plantings of Pine (Pinus sylvestris L.) in the Program Maxent (by the Example of the Bugulminsko-Belebeevsky Upland within the Republic of Bashkortostan. Prirodoobustrojstvo, 2017, no. 3, pp. 104–111. (In Russ.).
  12. Tembotova F.A., Pshegusov R.Kh., Tlupova Yu.M., Tembotov R.Kh., Akhomgotov A.Z. The Data on Remote Sensing and Possibility of Their Use to Evaluate the Performance of Forest Ecosystems in Mountain Territories (a Case Study of the Kabardino-Balkar Republic). Izvestiya Rossiiskoi Akademii Nauk. Seriya: Geograficheskaya, 2012, no. 6, pp. 89–97. (In Russ.).
  13. Tumadzhanov I.I. History of the North Caucasus Forests in the Holocene. Voprosy golotsena. Vilnius, 1961, pp. 249–266. (In Russ.).
  14. Adhikari D., Singh P.P,, Tiwary R., Barik S., Barik S.K. Modelling the Environmental Niche and Potential Distribution of Magnolia campbellii Hook. f. & Thomson for its Conservation in the Indian Eastern Himalaya. Plants of Commercial Values. India, New Delhi, New India Publ. Agency, 2019, pp. 79–88.
  15. Akaike H. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 1974, vol. 19, iss. 6, pp. 716–723. https://doi.org/10.1109/TAC.1974.1100705
  16. Akobia I., Janiashvili Z., Metreveli V., Zazanashvili N., Batsatsashvili K., Ugrekhelidze K. Modelling the Potential Distribution of Subalpine Birches (Betula spp.) in the Caucasus. Community Ecology, 2022, vol. 23, pp. 209–218. https://doi.org/10.1007/s42974-022-00097-4
  17. Araújo M.B., Peterson A.T. Uses and Misuses of Bioclimatic Envelope Modeling. Ecology, 2012, vol. 93, iss. 7, pp. 1527–1539. https://doi.org/10.1890/11-1930.1
  18. Baldwin R.A. Use of Maximum Entropy Modeling in Wildlife Research. Entropy, 2009, vol. 11, no. 4, pp. 854–866. https://doi.org/10.3390/e11040854
  19. Boyce M.S., Vernier P.R., Nielsen S.E., Schmiegelow F.K.A. Evaluating Resource Selection Functions. Ecological Modelling, 2002, vol. 157, iss. 2–3, pp. 281–300. https://doi.org/10.1016/S0304-3800 (02)00200-4
  20. Buchner J., Yin H., Frantz D., Kuemmerle T., Askerov E., Bakuradze T., Bleyhl B., Elizbarashvili N., Komarova A., Lewińska K.E., Rizayeva A., Sayadyan H., Tan B,, Tepanosyan G., Zazanashvili N., Radeloff V.C. Land-Cover Change in the Caucasus Mountains Since 1987 Based on the Topographic Correction of Multi-Temporal Landsat Composites. Remote Sensing of Environment, 2020, vol. 248, art. no. 111967. https://doi.org/10.1016/j.rse.2020.111967
  21. Çoban S. Spatial Stand Structure Analysis of Uludağ Fir Forests in the Northwest of Turkey. Applied Ecology and Environmental Research, 2020, vol. 18 (5), pp. 7353–7367. https://doi.org/10.15666/aeer/1805_73537367
  22. Daget Ph., Ahdali L., David P. Mediterranean Bioclimate and its Variation in the Palaearctic Region. Mediterranean-Type Ecosystems. Tasks for Vegetation Science. Dordrecht, Springer, 1988, vol. 19, pp. 139–148. https://doi.org/10.1007/978-94-009-3099-5_6
  23. De Marco P.J., Nóbrega C.C. Evaluating Collinearity Effects on Species Distribution Models: An Approach Based on Virtual Species Simulation. PLoS ONE, 2018, vol. 13 (9), art. no. e0202403. https://doi.org/10.1371/journal.pone.0202403
  24. Elith J., Franklin J. Species Distribution Modeling. Encyclopedia of Biodiversity (Second Edition). Oxford, Academic Press, 2013, pp. 692–705. https://doi.org/10.1016/B978-0-12-384719-5.00318-X
  25. ENVIREM. Environmental Rasters for Ecological Modeling, 2023. Available at: https://envirem.github.io/ (accessed 15.03.23).
  26. GBIF. Global Biodiversity Information Facility, 2023. Available at: https://www.gbif.org/ (accessed 5.04.23).
  27. Gokturk A., Tıraş H. Stand Structure and Spatial Distribution of Trees at Different Developmental Stages and Stand Layers in Mixed Stands in Artvin Region, Turkey. Applied Ecology and Environmental Research, 2020, vol. 18 (5), pp. 6163–6179. https://doi.org/10.15666/aeer/1805_61636179
  28. Hijmans R.J., Phillips S.J., Leathwick J., Elith J. Dismo: Species Distribution Modeling: R Package Version 1.3-3, 2017. Available at: https://CRAN.R-project.org/package=dismo (accessed 5.04.23).
  29. Komarova A. Mapping of Caucasian Fir Forests (Abies nordmanniana (Stev.) Spach). Proceedings of the 12 International SCGIS Conference. USA, California, Monterey, 2013. https://doi.org/10.13140/RG.2.1.1761.8004
  30. Păltineanu Cr., Mihălescu I.F., Seceleanu I., Dragotă C.S., Vasenciuc F. Ariditatea, Seceta, Evapotranspiraţia si Cerinţele de Apă Ale Culturilor Agricole in Romania. Constanţa, Editura Ovidius University Press, 2007. 319 р. (In Rom.).
  31. Pearson R.G., Dawson T.P., Liu C. Modelling Species Distributions in Britain: a Hierarchical Integration of Climate and Land-Cover Data. Ecography, 2004, vol. 27 (3), pp. 285–298. https://doi.org/10.1111/j.0906-7590.2004.03740.x
  32. Peterson A.T. Uses and Requirements of Ecological Niche Models and Related Distributional Models. Biodiversity Informatics, 2006, vol. 3, pp. 59–72. https://doi.org/10.17161/bi.v3i0.29
  33. Peterson A.T., Soberón J. Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Natureza & Conservação, 2012, vol. 10 (2), pp. 102–107. https://doi.org/10.4322/natcon.2012.019
  34. Phillips S.J., Dudík M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography, 2008, vol. 31, iss. 2, pp. 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  35. Pshegusov R., Tembotova F., Chadaeva V., Sablirova Y., Mollaeva M., Akhomgotov A. Ecological Niche Modeling of the Main Forest-Forming Species in the Caucasus. Forest Ecosystems, 2022, vol. 9, art. no. 100019. https://doi.org/10.1016/j.fecs.2022.100019
  36. Riley Sh.J., DeGloria S.D., Elliot R. A Terrain Ruggedness Index That Quantifies Topographic Heterogeneity. International Journal of Sciences, 1999, vol. 5, no. 1–4, pp. 23–27.
  37. Shevchenko N.E., Geraskina A.P. Northwest Caucasus Forest Spreading Evaluation by GIS Modeling and Historical and Geographic Data Analysis. Ecological Questions, 2019, vol. 30, no. 2, pp. 47–55. https://doi.org/10.12775/EQ.2019.011
  38. Sillero N., Barbosa A.M. Common Mistakes in Ecological Niche Models. International Journal of Geographical Information Science, 2021, vol. 35, iss. 2, pp. 213–226. https://doi.org/10.1080/13658816.2020.1798968
  39. SRTM 90m DEM Digital Elevation Database, 2022. Available at: https://srtm.csi.cgiar.org/ (accessed 10.04.23).
  40. Title P.O., Bemmels J.B. ENVIREM: An Expanded Set of Bioclimatic and Topographic Variables Increases Flexibility and Improves Performance of Ecological Niche Modeling. Ecography, 2018, vol. 41, iss. 2, pp. 291–307. https://doi.org/10.1101/075200
  41. Usta A., Yılmaz M. Relationships Between Environmental Variables and the Distributions of Tree Species on the Karadağ Mass in Transition Zone of Sites, NE Turkey. Eurasian Journal of Forest Science, 2020, vol. 8, pp. 11–24. https://doi.org/10.31195/ejejfs.583261
  42. WorldClim2. WorldClim Climate Database, 2023. Available at: https://worldclim.com/version2 (accessed 10.04.23).

Spatial Distribution of Pine Forests in the Caucasus. С. 92-111

 

Make a Submission


ADP_cert_2025.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png

  

Продолжая просмотр сайта, я соглашаюсь с использованием файлов cookie владельцем сайта в соответствии с Политикой в отношении файлов cookie, в том числе на передачу данных, указанных в Политике, третьим лицам (статистическим службам сети Интернет).