Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425

Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

The Dynamics of Forest Fire Hazard Changes in the Udmurt Republic. С. 76-91

Версия для печати

Tyurin A.P.

Complete text of the article:

Download article (pdf, 3.1MB )

UDС

630*431.5(470.51)

DOI:

10.37482/0536-1036-2025-2-76-91

Abstract

The main approaches to the organization of monitoring of fire hazardous situations at the regional level and the problems arising in the technical support of such monitoring have been investigated. The aim of this work has been to study the dynamics of changes in fire hazard in forests on the territory of the Udmurt Republic. The variation in the comprehensive fire hazard indicator, observed regardless of the structure of survey plots, has been considered along with data on actual fires in 2011–2023. Due to the significant extent of the territory of Udmurtia, it has been assumed that the comprehensive indicator differs with a change in longitude or latitude, calculated for the maximum number of observation points simultaneously. An application has been developed that collects and displays data and calculates a comprehensive fire hazard indicator for 210 localities over 94 days of the summer period of 2023. The application allows one to evaluate both static data on fires in the past in the form of a “bubble” visualization, and fluctuations in the comprehensive indicator during the fire season. OpenWeather has been used as a weather service, and OpenLayers – as a map data library. The distinctive features of the created application have been: a) displaying the wind direction and fire hazard class at observation points using color markers; b) using a raster map of the region to determine the potential connection between the current fire hazard class and the nature of the forest fund plots. As the study has shown, within each of the 25 municipalities of the region, the actual comprehensive indicator can vary significantly. The results of multi-day monitoring have made it possible to establish a strong correlation (0.88) between the indicator and longitude for populated areas of the Udmurt Republic, and a weak correlation (0.31) between the indicator and latitude. It has been shown that the majority of fires in April–October occur in May – 33.8 % of the total number of cases that have occurred during the period of 2011–2023. The results of the study can be useful for the development and implementation of measures to prevent forest fires and reduce damage from them, as well as for clarifying or validating potential fire zones based on modern approaches.

Authors

Alexander P. Tyurin, Doctor of Engineering, Prof.; ResearcherID: J-6236-2014, ORCID: https://orcid.org/0000-0002-3898-0804


Affiliation

Kalashnikov Izhevsk State Technical University, ul. Studencheskaya, 7, Izhevsk, 426069, Russian Federation; asd1978@mail.ru

Keywords

forest fire, dynamics of change, comprehensive fire hazard indicator, season, weather data tracking, wind direction

For citation

Tyurin A.P. The Dynamics of Forest Fire Hazard Changes in the Udmurt Republic. Lesnoy Zhurnal = Russian Forestry Journal, 2025, no. 2, pp. 76–91. (In Russ.). https://doi.org/10.37482/0536-1036-2025-2-76-91

References

  1. Bondarchuk S.S., Bondarchuk I.S. Statistical Processing of Experimental Data in MS Excel. Tomsk, Tomsk State Pedagogical University Publ., 2018. 433 p. (In Russ.).
  2. Brushlinsky N., Sokolov S., Klepko E., Popkov S., Ivanova O. A Complex Index of Fire Risks in Rural Areas of Russia. Pozhary i chrezvychajnye situatsii: predotvrashchenie, likvidatsiya = Fires and Emergencies: Prevention, Elimination, 2016, no. 2, pp. 48–53. (In Russ.). https://doi.org/10.25257/FE.2016.2.48-53
  3. Volkov S.N., Nalepin V.P., Druzhininskaya K.A. Efire Safety in the Forests of the Tarnogsky Forestry of the Vologda Region. Teoreticheskie i prikladnye problem agropromyshlennogo kompleksa = Theoretical & Applied Problems of Agro-Industry, 2021, no. 1 (47), pp. 29–33. (In Russ.). https://doi.org/10.32935/2221-7312-2021-47-1-29-33
  4. Volokitina A.V., Sofronova T.M., Korets M.A. Regional Scales of Fire Danger Rating in the Forest: Improved Technique. Sibirskij lesnoj zhurnal = Siberian Journal of Forest Science, 2016, no. 2, pp. 52–61. (In Russ.). https://doi.org//10.15372/SJFS20170206
  5. Zverev A.P., Nurmagomedov T.N. Decision Support System for Peat Fire Prevention. Izvestiya Tul’skogo Gosudarstvennogo Universiteta. Nauki o zemle, 2021, no. 2, pp. 30–37. (In Russ.).
  6. Podrezov Yu.V. Principal Directions for Prevention of Emergency Fire Situations in Forests. Lesnoy Zhurnal = Russian Forestry Journal, 2023, no. 2, pp. 172–182. (In Russ.). https://doi.org/10.37482/0536-1036-2023-2-172-182
  7. Raimbekov K.Zh. Complex Index of Fire Danger Rural Areas of the Republic of Kazakhstan. Pozharovzryvobezopasnost’ = Fire and Explosion Safety, 2016, vol. 25, no. 5, pp. 52–56. (In Russ.). https://doi.org/10.18322/PVB.2016.25.05.52-56
  8. Sverlova L.I. Method of Assessing Fire Hazard in Forests Based on Weather Conditions, Taking into Account Atmospheric Aridity Zones and Seasons of the Year: Handbook. Khabarovsk, Far Eastern Research Center of the Far Eastern Administration of the Hydrometeorological Service, 2000. 48 p. (In Russ.).
  9. Timofeeva S.S., Garmyshev V.V., Astrakhantseva A.Yu. Comparative Analysis of Environmental Risks of Wildfires in the Baikal Region. Bezopasnost’ tekhnogennykh i prirodnykh system = Safety of Technogenic and Natural Systems, 2022, no. 4, pp. 22–29. (In Russ.). https://doi.org/10.23947/2541-9129-2022-4-22-29
  10. The Udmurt Republic: Encyclopedia. Udmurtia, Izhevsk, 2000. 800 p. (In Russ.).
  11. Alves D., Almeida M., Viegas D.X., Novo I., Luna M.Y. Fire Danger Harmonization Based on the Fire Weather Index for Transboundary Events between Portugal and Spain. Atmosphere, 2021, vol. 12, no. 9, art. no. 1087. https://doi.org/10.3390/atmos12091087
  12. Amri K., Sitanggang I.S. A Geographic Information System for Hotspot Occurrences Classification in Riau Province Indonesia. Procedia Environmental Sciences, 2015, vol. 24, pp. 127–131. https://doi.org/10.1016/j.proenv.2015.03.017
  13. Chuvieco E., Aguado I., Yebra M., Nieto H., Salas J., Pilar Martín M., Vilar L., Martínez J., Martín S., Ibarra P., de la Riva J., Baeza J., Rodríguez F., Molina J.R., Herrera M.A., Zamora R. Development of a Framework for Fire Risk Assessment Using Remote Sensing and Geographic Information System Technologies. Ecological Modelling, 2010, vol. 221, iss. 1, pp. 46–58. https://doi.org/10.1016/j.ecolmodel.2008.11.017
  14. Fire Weather Index API. OpenWeather Website. Available at: https://docs.open-weather.co.uk/api/fire-index-api (accessed 20.05.23).
  15. Joint Research Centre (European Comission), San-Miguel-Ayanz J., Durrant T., Boca R., Libertà G., Branco A., De Rigo D., Ferrari D., Maianti P., Artés Vivancos T., Oom D., Pfeiffer H., Nuijten D., Leray T., Benchikha A., Abbas M., Humer F., Vacik H., Müller M., Konstantinov V., Pešut I., Kaliger A., Petkoviček S., Papageorgiou K., Toumasis I., Pecl J., Ruuska R., Chassagne F., Joannelle P., Gonschorek A., Theodoridou C., Debreceni P., Nagy D., Nugent C., Zaken Avi B., Di Fonzo M., Sciunnach R., Micillo G., Fresu G., Marzoli M., Ascoli D., Leisavnieks E., JaunķIķis Z., Mitri G., Repšienė S., Glazko Z., Assali F., Mharzi Alaoui H., Kok E., Stoof C., Maren van A.-J., Timovska M., Botnen D., Piwnicki J., Szczygieł R., Moreira J., Pereira T., Cruz M., Sbirnea R., Mara S., Eritsov A., Longauerová V., Jakša J., Lopez-Santalla A., Sandahl L., Beyeler S., Conedera M., Pezzatti B., Dursun K.T., Baltaci U., Gazzard R., Moffat A., Sydorenko S. Forest Fires in Europe, Middle East and North Africa 2018. Publications Office of the European Union, 2019. https://doi.org//10.2760/1128
  16. Lawson B.D., Armitage O.B. Weather Guide for the Canadian Forest Fire Danger Rating System. Alberta, Edmonton, Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada. 84 p.
  17. Li X., Zhao G., Yu X., Yu Q. A Comparison of Forest Fire Indices for Predicting Fire Risk in Contrasting Climates in China. Natural Hazards, 2014, no. 70, pp. 1339–1356. https://doi.org/10.1007/s11069-013-0877-6
  18. Masinda M.M., Li F., Qi L., Sun L., Hu T. Forest Fire Risk Estimation in a Typical Temperate Forest in Northeastern China Using the Canadian Forest Fire Weather Index: Case Study in Autumn 2019 and 2020. Natural Hazards, 2022, vol. 111, pp. 1085–1101. https://doi.org/10.1007/s11069-021-05054-4
  19. Mavsar R., González Cabán A., Varela E. The State of Development of Fire Management Decision Support Systems in America and Europe. Forest Policy and Economics, 2013, vol. 29, pp. 45–55. https://doi.org/10.1016/j.forpol.2012.11.009
  20. McInerney D., San-Miguel-Ayanz J., Corti P., Whitmore C., Giovando C., Camia A. Design and Function of the European Forest Fire Information System. Photogrammetric Engineering & Remote Sensing, 2013, no. 10, pp. 965–973 (9). https://doi.org/10.14358/PERS.79.10.965
  21. Rodriguez Aseretto D., Di Leo M., de Rigo D., Corti P., McInerney D., Camia A., San-Miguel-Ayanz J. Free and Open Source Software Underpinning the European Forest Data Centre. Geophysical Research Abstracts, 2013, vol. 15, art. no. 12101. https://doi.org/10.6084/m9.figshare.155700
  22. Safi Y., Bouroumi A. Prediction of Forest Fires Using Artificial Neural Networks. Applied Mathematical Sciences, 2013, vol. 7, no. 5-8, pp. 271–286. https://doi.org/10.12988/ams.2013.13025
  23. Satir O., Berberoglu S., Donmez C. Mapping Regional Forest Fire Probability Using Artificial Neural Network Model in a Mediterranean Forest Ecosystem. Geomatics, Natural Hazards and Risk, 2016, vol. 7, iss. 5, pp. 1645–1658. https://doi.org/10.1080/19475705.2015.1084541
  24. Sevinç V. Mapping the Forest Fire Risk Zones Using Artificial Intelligence with Risk Factors Data. Environmental Science and Pollution Research, 2023, vol. 30, pp. 4721– 4732. https://doi.org/10.1007/s11356-022-22515-w

The Dynamics of Forest Fire Hazard Changes in the Udmurt Republic. С. 76-91

 

Make a Submission


ADP_cert_2025.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png

  

Продолжая просмотр сайта, я соглашаюсь с использованием файлов cookie владельцем сайта в соответствии с Политикой в отношении файлов cookie, в том числе на передачу данных, указанных в Политике, третьим лицам (статистическим службам сети Интернет).