Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425

Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

Biomass and Volume Estimation Models for Bark of Small-Leaved Linden (Tilia cordata Mill.). P. 21-36

Версия для печати

Aydar K. Gabdelkhakov, Vladimir F. Konovalov, Zagir Z. Rakhmatullin, Liubov N. Blonskaya, Ilyas I. Fazlutdinov

Complete text of the article:

Download article (pdf, 0.6MB )

UDС

630*524.39:630*523:630.526.5

DOI:

10.37482/0536-1036-2022-5-21-36

Abstract

The research is aimed at analyzing variability and developing mathematical models for estimating bark biomass and volume, volume of trunk with bark, and bark proportion of small-leaved linden (Tilia cordata Mill.) trees growing in natural coppice and artificial stands. The models are based on data from 107 and 95 destructively sampled trees in natural coppice and artificial stands, respectively. There were 10 sampling areas per stand type, representing different growth stages. The model trees were sawn into 2-meter sections, the volumes of which with and without bark were calculated using the Huber formula. The total volume of the tree trunk with and without bark is obtained by summing the volumes of all sections and the conical volume of the tree top. The bark volume was the difference between these two parameters. The bark biomass was determined by direct weighing, followed by conversion to absolutely dry mass. The correlations between the dendrometric parameters and the selected tree characteristics were estimated. The effectiveness of 3 regression models using the diameter at breast height (dbh = 1.3 m) and the tree height (h) as independent variables was studied in a comparative aspect. The bark biomass and volume, and the volume of trunk with bark are strongly influenced by these values. This correlation is very weak for the bark volume proportion in natural coppice stands, and insignificant in artificial stands. The bark volume proportion for each tree was calculated as the ratio of the difference between the volume of trunk with and without bark and the volume of trunk with bark. The equation that showed the best statistical characteristics in terms of consistency was chosen in order to predict the bark biomass and volume, the volume of trunks with bark of small-leaved linden trees. These models were estimated using the weighted least squares method taking into account the inherent errors and heteroscedasticity, by assigning each model its weight function separately for natural coppice and artificial stands that differ significantly from each other in morphometric features.

Authors

Aydar K. Gabdelkhakov1*, Candidate of Agriculture, Assoc. Prof.; ResearcherID: G-3023-2018, ORCID: https://orcid.org/0000-0001-7129-880X
Vladimir F. Konovalov1, Doctor of Agriculture, Prof.; ResearcherID: G-2775-2018, ORCID:https://orcid.org/0000-0003-2020-5540 
Zagir Z. Rakhmatullin1, Candidate of Agriculture; ResearcherID: G-2247-2018, ORCID: https://orcid.org/0000-0002-3223-6726
Liubov N. Blonskaya1, Candidate of Biology, Assoc. Prof.; ResearcherID: G-4819-2018, ORCID: https://orcid.org/0000-0002-7007-1643
Ilyas I. Fazlutdinov2, Leading Specialist; ResearcherID: C-9581-2019, ORCID: https://orcid.org/0000-0003-0327-3752

Affiliation

1Bashkir State Agrarian University, ul. 50-letiya Oktyabrya, 34, Ufa, Republic of Bashkortostan, 450001, Russian Federation; aliya201199@mail.ru*, konovalov-48@mail.ruzagir1983@mail.rul.n.blonskaya@mail.ru
2Ministry of Forestry of the Republic of Bashkortostan, ul. Lenina, 86, Ufa, Republic of Bashkortostan, 450006, Russian Federation; solnc2007@yandex.ru

Keywords

trunk diameter at breast height, tree height, bark biomass, trunk volume, bark volume, bark proportion, small-leaved linden, modeling, errors, bark biomass estimation

For citation

Gabdelkhakov A.K., Konovalov V.F., Rakhmatullin Z.Z., Blonskaya L.N., Fazlutdinov I.I. Biomass and Volume Estimation Models for Bark of Small-Leaved Linden (Tilia cordata Mill.). Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 5, pp. 21–36. (In Russ.). https://doi.org/10.37482/0536-1036-2022-5-21-36

References

1. Gabdelkhakov A.K., Rakhmatullin Z.Z., Martynova M.V., Fazlutdinov I.I., Mul lagaleev I.A. Percentage of Bark of Small-Leaved Linden (Tilia cordata Mill.) Trees Ac cording to Yield Tables. Russian electronic scientific journal, 2021, vol. 2(40), pp. 121–130. https://doi.org/10.31563/2308-9644-2021-40-2-121-130
2. Orlova I.V., Filonova E.S. The Choice of Exogenous Factors in the Regression Model with Multicollinearity in the Data. International Journal of Applied and Fundamental Re search, 2015, no. 5, part 1, pp. 108–116.
3.  Orlovskaya T.V., Gulbjakova C.N., Gujva N.N., Ogurtcov Y.A. Studying the Tilia cor data L. Bark with the Purpose of Creation the New Medicines. Modern problems of science and education, 2013, no. 2, p. 427.Access mode: https://science-educa-tion.ru/ru/article/view?id=8561  
4. Hasanova Z.F. Forest Works of the Bashkir of the Inzerian Basin (End of the 19th – the Beginning of the 21st Centuries). History, Archeology and Ethnography of the Caucasus, 2018, vol. 14, no. 1, pp. 105–112. https://doi.org/10.24411/2618-6772-2018-10113
5. Akintunde M.O., Olawale A.O., Amusan A.S., Azeez A.I.A. Comparing Two Clas sical Methods of Detecting Multicollinearity in Financial and Economic Time Series Data. International Journal of Applied Mathematics and Theoretical Physics, 2021, vol. 7, no. 3,pp. 62–67. https://doi.org/10.11648/j.ijamtp.20210703.11
6. Avila A.L., Albrecht A. Alternative Baumarten im Klimawandel: Artensteckbriefe – eine Stoffsammlung. Baden-Württemberg, Forstliche Versuchs und Forschungsanstalt (FVA), 2018. 123 p. (In Ger.). Available at: https://www.fva-bw.de/fileadmin/publikationen/ sonstiges/180201steckbrief.pdf (accessed 31.03.22).
7. Bauer R., Billard A., Mothe F., Longuetaud F., Houballah M., Bouvet A., Cuny H., Colin A., Colin F. Modelling Bark Volume for Six Commercially Important Tree Species in France: Assessment of Models and Application at Regional Scale. Annals of Forest Science, 2021, vol. 78, art. 104. https://doi.org/10.1007/s13595-021-01096-7
8. Bijak S., Bronisz A., Bronisz K., Tomusiak R., Wojtan R., Baran P., Czemiel T., Zasada M. Models to Estimate the Bark Volume for Larix sp. in Poland. Environmental Sci ences Proceedings, 2021, vol. 3, iss. 1, art. 71. https://doi.org/10.3390/IECF2020-07915
9. Božić M., Čavlović J., Vedriš M., Jazbec M. Modeling Bark Thickness of Silver Fir Trees (Abies alba Mill.). Šumarski list, 2007, vol. 131, no. 1-2, pp. 3–12. (In Croat.). https://doi.org/10.31298/sl
10. Breusch T.S., Pagan A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica, 1979, vol. 47, no. 5, pp. 1287–1294. https://doi. org/10.2307/1911963
11. Canga E., Diéguez-Aranda U., Elias A.K., Cámara A. Above-Ground Biomass Equa tions for Pinus radiata D. Don in Asturias. Forest Systems, 2013, vol. 22, no. 3, pp. 408–415. https://doi.org/10.5424/fs/2013223-04143
12. Cellini J.M., Galarza M., Burns S.L., Martinez-Pastur G.J., Lencinas M.V. Equations of Bark Thickness and Volume Profiles at Different Heights with Easy-Measurement Variables. Forest Systems, 2012, vol. 21, no. 1, pp. 23–30. https://doi.org/10.5424/fs/2112211-01963
13. Chen D., Huang X., Zhang S., Sun X. Biomass Modeling of Larch (Larix spp.) Plantations in China Based on the Mixed Model, Dummy Variable Model, and Bayesian Hi erarchical Model. Forests, 2017, vol. 8, iss. 8, art. 268. https://doi.org/10.3390/f8080268
14. Diamantopoulou M.J., Özçelik R., Yavuz H. Tree-Bark Volume Prediction via Machine Learning: A Case Study Based on Black Alder’s Tree-Bark Production. Computers and Electronics in Agriculture, 2018, vol. 151, pp. 431–440. https://doi.org/10.1016/j.com- pag.2018.06.039
15. Eaton E., Caudullo G., de Rigo D. Tilia cordata, Tilia platyphyllos and Other Limes in Europe: Distribution, Habitat, Usage and Threats. European Atlas of Forest Tree Species. Ed. by J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, A. Mauri. Luxembourg, Publications Office of the EU, 2016, pp. 184–185. Available at: https://forest. jrc.ec.europa.eu/media/atlas/Tilia_spp.pdf (accessed 31.03.22).
16. Guéguen F., Stille P., Lahd Geagea M., Boutin R. Atmospheric Pollution in an Ur ban Environment by Tree Bark Biomonitoring – Part I: Trace Element Analysis. Chemosphere, 2012, vol. 86, iss. 10, pp. 1013–1019. https://doi.org/10.1016/j.chemosphere.2011.11.040
17. Heath L.S., Hansen M., Smith J.E., Smith B.W., Miles P.D. Investigation into Calcu lating Tree Biomass and Carbon in the FIADB Using a Biomass Expansion Factor Approach. Forest Inventory and Analysis (FIA) Symposium 2008. Park City, UT, USDA, 2009. 26 р.
18. Hemery G., Spiecker H., Aldinger E., Kerr G., Collet C., Bell S. COST Action E42: Growing Valuable Broadleaved Tree Species. Final Report. 2008. 40 p.
19. Kim J.H. Multicollinearity and Misleading Statistical Results. Korean Journal of Anesthesiology, 2019, vol. 72(6), pp. 558–569. https://doi.org/10.4097/kja.19087
20. Kohnle U., Hein S., Sorensen F.C., Weiskittel A.R. Effects of Seed Source Or igin on Bark Thickness of Douglas-fir (Pseudotsuga menziesii) Growing in Southwestern Germany. Canadian Journal of Forest Research, 2012, no. 42(2), pp. 382–399. https://doi. org/10.1139/X11-191
21. Laasasenaho J., Melkas T., Aldén S. Modelling Bark Thickness of Picea abies with Taper Curves. Forest Ecology and Management, 2005, vol. 206, iss. 1-3, pp. 35–47. https://doi.org/10.1016/j.foreco.2004.10.058
22. Lestander T.A., Lundström A., Finell M. Assessment of Biomass Functions for Calculating Bark Proportions and Ash Contents of Refined Biomass Fuels Derived from Major Boreal Tree Species. Canadian Journal of Forest Research, 2012, vol. 42, no. 1,pp. 59–66. https://doi.org/10.1139/x11-144
23. Liepiņš J., Liepiņš K. Evaluation of Bark Volume of Four Tree Species in Latvia.Research for Rural Development, 2015, vol. 2, pp. 22–28.
24. Magalhães T.M. Effects of Site and Tree Size on Wood Density and Bark Proper ties of Lebombo Ironwood (Androstachys johnsonii Prain). New Zealand Journal of Forestry Science, 2021, vol. 51, art. 3. https://doi.org/10.33494/nzjfs512021x32x
25. Meng S., Jia Q., Liu Q., Zhou G., Wang H., Yu J. Aboveground Biomass Allocation and Additive Allometric Models for Natural Larix gmelinii in the Western Daxing’anling Mountains, Northeastern China. Forests, 2019, vol. 10, iss. 2, art. 150. https://doi.org/10.3390/f10020150
26. Meng S., Yang F., Hu S., Wang H., Wang H. Generic Additive Allometric Models and Biomass Allocation for Two Natural Oak Species in Northeastern China. Forests, 2021, vol. 12, iss. 6, art. 715. https://doi.org/10.3390/f12060715
27. Myking T., Hertzberg A., Skrøppa T. History, Manufacture and Properties of Lime Bast Cordage in Northern Europe. Forestry, 2005, vol. 78, iss. 1, pp. 65–71. https://doi. org/10.1093/forestry/cpi006
28. Neumann M., Lawes M.J. Quantifying Carbon in Tree Bark: The Importance of Bark Morphology and Tree Size. Methods in Ecology and Evolution, 2021, no. 12, iss. 4,pp. 646–654. https://doi.org/10.1111/2041-210X.13546
29. Pásztory Z., Mohácsiné I.R., Gorbacheva G., Börcsök Z. The Utilization of Tree Bark. BioResources, 2016, vol. 11(3), pp. 7859–7888. https://doi.org/10.15376/biores.11.3
30. Radoglou K., Dobrowolska D., Spyroglou G., Nicolescu V.-N. A Review on the Ecology and Silviculture of Limes (Tilia cordata Mill., Tilia platyphyllos Scop. and Tilia to mentosa Moench.) in Europe. Die BodenKultur, 2009, vol. 60, no. 3, pp. 9–19.
31. Repola J. Biomass Equations for Scots Pine and Norway Spruce in Finland. Silva Fennica, 2009, vol. 43, no. 4, pp. 625–647. https://doi.org/10.14214/sf.184
32. Saint-Andre L., M’Bou A.T., Mabiala A., Mouvondy W., Jourdan C., Roupsard O., Deleporte P., Hamel O., Nouvellon Y. Age-Related Equations for Above and Below-Ground Biomass of a Eucalyptus Hybrid in Congo. Forest Ecology and Management, 2005, vol. 205, iss. 1-3, pp. 199–214. https://doi.org/10.1016/j.foreco.2004.10.006
33. Samojlik T. Drzewo wielce użyteczne – historia lipy drobnolistnej (Tilia cordata)w Puszczy Białowieskiej. Rocznik Dendrologiczny, 2005, vol. 53, pp. 55–64. (In Pol.).
34. Schmidt O., Buβler H. Die Winterlinde als Lebensraum für Tierarten. LWF Wis sen, 2016, no. 78, pp. 60–65. (In Ger.).
35. Sedmíková M., Löwe R., Jankovský M., Natov P., Linda R., Dvořák J. Estimation of Over and Under-Bark Volume of Scots Pine Timber Produced by Harvesters. Forests, 2020, vol. 11, iss. 6, art. 626. https://doi.org/10.3390/f11060626
36. Sharma R.P., Bhandari S.K., BK R. Allometric Bark Biomass Model for Daphne bholua in the Mid-Hills of Nepal. Mountain Research and Development, 2017, vol. 37, no. 2,pp. 206–215. https://doi.org/10.1659/mrd-journal-d-16-00052.1
37. Sonmez T., Keles S., Tilki F. Effect of Aspect, Tree Age and Tree Diameter on Bark Thickness of Picea orientalis. Scandinavian Journal of Forest Research, 2007, vol. 22, iss. 3,pp. 193–197. https://doi.org/10.1080/02827580701314716
38. Stängle S.M., Sauter U.H., Dormann C.F. Comparison of Models for Estimating Bark Thickness of Picea abies in Southwest Germany: The Role of Tree, Stand, and Envi ronmental Factors. Annals of Forest Science, 2017, vol. 74, art. 16. https://doi.org/10.1007/ s13595-016-0601-2
39. Subedi M., Sharma R.P. Allometric Biomass Models for Bark of Cinnamomum tamala in Mid-Hill of Nepal. Biomass and Bioenergy, 2012, vol. 47, pp. 44–49.
40. Temesgen H., Affleck D., Poudel K., Gray A., Sessions J. A Review of the Chal lenges and Opportunities in Estimating Above Ground Forest Biomass Using Tree-Lev el Models. Scandinavian Journal of Forest Research, 2015, vol. 30, iss. 4, pp. 326–335. https://doi.org/10.1080/02827581.2015.1012114
41. Vacek S., Vacek Z., Ulbrichová I., Bulušek D., Prokůpková A., Král J., Vančura K. Biodiversity Dynamics of Differently Managed Lowland Forests Left to Spontaneous De velopment in Central Europe. Austrian Journal of Forest Science, 2019, vol. 136, iss. 3,pp. 249–281.
42. Vezzola L.C., Muttoni G., Merlini M., Rotiroti N., Pagliardini L., Hirt A.M., Pelfi ni M. Investigating Distribution Patterns of Airborne Magnetic Grains Trapped in Tree Barks in Milan, Italy: Insights for Pollution Mitigation Strategies. Geophysical Journal Internation al, 2017, vol. 210, iss. 2, pp. 989–1000. https://doi.org/10.1093/gji/ggx232
43. Wang X., Zhao D., Liu G., Yang C., Teskey R.O. Additive Tree Biomass Equations for Betula platyphylla Suk. Plantations in Northeast China. Annals of Forest Science, 2018, vol. 75, art. 60. https://doi.org/10.1007/s13595-018-0738-2
44. Wehenkel C., Cruz-Cobos F., Carrillo A., Lujan-Soto J.E. Estimating Bark Vol umes for 16 Native Tree Species on the Sierra Madre Occidental, Mexico. Scandinavian Jour nal of Forest Research, 2012, vol. 27, iss. 6, pp. 578–585. https://doi.org/10.1080/02827581 .2012.661453
45. Wilhelmsson L., Arlinger J., Spångberg K., Lundqvist S.-O., Grahn T., Heden berg Ö., Olsson L. Models for Predicting Wood Properties in Stems of Picea abies and Pi nus sylvestris in Sweden. Scandinavian Journal of Forest Research, 2002, vol. 17, iss. 4,pp. 330–350. https://doi.org/10.1080/02827580260138080
46. Zeng W.S., Tang S.Z. Bias Correction in Logarithmic Regression and Com parison with Weighted Regression for Nonlinear Models. Nature Precedings, 2011. 11 p. https://doi.org/10.1038/npre.2011.6708.1


 

Make a Submission


ADP_cert_2025.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png