Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425
Phone: +7 (8182) 21-61-18 Lesnoy Zhurnal |
V.I. Fedyukov, V.Yu. Chernov, M.S. Chernova, O.V. Tsoy Complete text of the article:Download article (pdf, 0.5MB )UDС630*6AbstractThe physical and mechanical properties of standing wood are not constant along the tree height and diameter. They also differ depending on the tree species and conditions of its growth. So, the research purpose is to identify patterns of change and interrelations between the parameters of density, compressive strength and sound propagation velocity along the wood fibers inside the stem of a birch tree growing in the forests of the Middle Volga region of Russia, where such research had never been conducted before. The work was carried out on two sampling areas laid out by standard methods in birch forests of natural origin with average productive capacity on the territory of the Scientific-Experimental Forest District of the Volga State University of Technology in the Mari El Republic. The average age of the birch trees is about 70 yrs, breast height diameter is 30 cm, and height is 28.5 m; 14 sample trees were studied; 0.5 m long chucks were cut out from their stems at a height of 1.3 m from the butt end and at relative heights of 0.25H, 0.5H, and 0.75H. Experimental work was carried out in a laboratory environment with modern technical facilities using standard procedures. Mathematical models describing the changes in the parameters stated above and the interrelations between them with regard to the stem diameter at relative heights were obtained. The research results generally confirmed the findings of other researchers on densitograms and other physical and mechanical properties of wood within the tree stem. However, the features listed above were revealed for birch trees growing under such conditions; in particular, it concerns the ratio of strength and density, as well as the wood strength and the velocity of sound propagation through the fibers. The results obtained have both scientific and practical value as a basis for the development of a non-destructive method for predicting technical properties of standing wood as well as timber for producing assortments for special purposes.<br>AuthorsVladimir I. Fedyukov, Doctor of Engineering, Prof.; ResearcherID:ABC-7222-2021, ORCID: https://orcid.org/0000-0003-4146-463XVasilii Yu. Chernov, Candidate of Engineering, Assoc. Prof.; ResearcherID: X-4439-2019, ORCID: https://orcid.org/0000-0001-9496-7340 Maria S. Chernova, Postgraduate Student; ResearcherID:X-4073-2019, ORCID: https://orcid.org/0000-0002-0192-5158 Olga V. Tsoy, External PhD Student; ResearcherID: ABC-7278-2021, ORCID: https://orcid.org/0000-0001-8028-2201 AffiliationVolga State University of Technology, pl. Lenina, 3, Yoshkar-Ola, Mari El Republic, 424000,Russian Federation; e-mail: fiv48@mail.ru, chernovvy@volgatech.net Keywordsbirch wood, wood density, compressive strength along the grain, sound velocity, interrelation of physical and mechanical parametersFor citationFedyukov V.I., Chernov V.Yu., Chernova M.S., Tsoy O.V. Interrelations of Wood Physical and Mechanical Properties and Patterns of Their Change within the Birch Stem. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 6, pp. 150–159. DOI: 10.37482/0536-1036-2021-6-150-159References1. Bello A.A., Jimoh A.A. Some Physical and Mechanical Properties of African Birch (Anogeissus leiocarpus) Timber. Journal of Applied Sciences and Environmental Management, 2018, vol. 22, iss. 1, pp. 79–84. DOI: https://doi.org/10.4314/jasem.v22i1.14 2. Collins S., Fink G. Mechanical Behaviour of Sawn Timber of Silver Birch under Compression Loading. Wood Material Science & Engineering, 2020, pp. 1–8. DOI: https://doi.org/10.1080/17480272.2020.1801836 3. Danilov D.A. Features of Mixed Stands Formation, Commodity Structure and Wood Density of Pine and Spruce Trees: Dr. Agric. Sci. Diss. Abs. Saint Petersburg, 2016. 41 p. 4. Denisov S.А. Birch Forests of the Middle Volga Region: Biology, Ecology and Integrated Economy in Birch Forests of Betula pendula Roth and Betula pubescens Ehrh: Dr. Agric. Sci. Diss. Abs. Yoshkar-Ola, 1999. 40 p. 5. Fedyukov V.I. Resonant Spruce: Selection from Stands, Cultivation, and Intended Use: Monograph. Yoshkar-Ola, VSUT Publ., 2016. 256 p. 6. Fedyukov V.I., Saldaeva E.Y., Chernova M.S., Chernov V.Y. Research into Dendro-Acoustic Properties of Introduced Clones’ Wood as Material for Manufacturing Musical Instruments. SEEFOR, 2019, vol. 10, no. 2, pp. 173–179. DOI: https://doi.org/10.15177/seefor.19-18 7. Heräjärvi H. Variation of Basic Density and Brinell Hardness within Mature Finnish Betula pendula and B. pubescens Stems. Wood and Fiber Science, 2004, vol. 36, no. 2, pp. 216–227. 8. Liepiņš K., Rieksts-Riekstiņš J. Stemwood Density of Juvenile Silver Birch trees (Betula pendula Roth.) from Plantations on Former Farmlands. Baltic Forestry, 2013, vol. 19(2), pp. 179–186. 9. Luostarinen K., Verkasalo E. Birch as Sawn Timber in Mechanical Further Processing in Finland. A Literature Study. Silva Fennica Monographs 1, 2000. 40 p. 10. Melekhov I.S. Significance of Forest Types and Forest Site Conditions in the study of Wood Structure and Its Physical and Mechanical Properties. Trudy Instituta lesa AN SSSR, 1949, vol. 1U, pp. 11–21. 11. Melekhov V.I., Babich N.A., Korchagov S.A. Qualitative Characteristics of Pine Wood on Plantations. Arkhangelsk, ASTU Publ., 2005. 116 p. 12. Mikheyevskaya M.A. Production of Pressed Wood with Homogeneous Quality Indicators: Сand. Eng. Sci. Diss. Voronezh, 2019. 250 p. 13. Musikhina L.A. Research and Development of Scientific and Methodological Bases of Qualimetry of Wood Raw Materials of the Volga-Vyatka Region: Сand. Eng. Sci. Diss. Yoshkar-Ola, 2005. 235 p. 14. Pavlovičs G., Dolacis J., Daugaviete M., Hrols J., Alksne A., Cīrule D. Comparison of the Physical and Mechanical Properties of the Wood of Wild Cherry (Prunus avium L.) and Birch (Betula pendula Roth.) Grown in Latvia. Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology, 2006, vol. 59, pp. 164–168. 15. Pchelin V.I. Biological Bases of Cultivation of High-Quality Wood for Target Purpose: Case Study of Spruce and Aspen Forests of the Middle Volga Region: Dr. Agric. Sci. Diss. Yoshkar-Ola, 1989. 478 р. 16. Platonov A.D., Mikheevskaya М.А., Snegireva S.V., Kuryanova Т.K., Kiseleva А.V., Topcheev А.N. The Influence of Vessels Variability on Wood Quality of Birch and Aspen in the Trunk of the Tree. Lesotekhnicheskiy zhurnal [Forestry Engineering Journal], 2018, vol. 8, no. 2(30). pp. 212–221. DOI: https://doi.org/10.12737/article_5b24061a94a5f2.93144911 17. Poluboyarinov O.I. Wood Density. Moscow, Lesnaya promyshlennost’ Publ., 1976. 159 p. 18. Pushinskis V., Mionchinskis U., Tuherm H., Hrols J., Dolacis J. Some Physical and Mechanical Properties of Birch (Betula pendula Roth.) Wood Growing in Latvia. Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology, 2003, vol. 53, pp. 308–317. 19. Repola J. Models for Vertical Wood Density of Scots Pine, Norway Spruce and Birch Stems, and Their Application to Determine Average Wood Density. Silva Fennica, 2006, vol. 40, no. 4, pp. 673−685. DOI: https://doi.org/10.14214/sf.322 20. Sheykman D.V., Kosheleva D.V. Study of Physical and Mechanical Properties of Modified Birch and Aspen Wood. Vestnik tekhnologicheskogo universiteta [Bulletin of the Technological University], 2016, vol. 19, no. 15, pp. 110–112. 21. Shirnin V.K. Breeding for Wood Quality: Case Study of Common Oak and Other Species in the Central Chernozem Region: Dr. Agric. Sci. Diss. Voronezh, 1999. 302 p. 22. Vikhrov V.E. Oak Wood Structure and Properties. Moscow, AN SSSR Publ., 1954. 263 p. 23. Volynskiy V.N. On the Correlation of Timber Strength and a Number of Its Parameters. Lesnoy Zhurnal [Russian Forestry Journal], 1991, no. 1, pp. 60–64. URL: http://lesnoizhurnal.ru/upload/iblock/706/60_64.pdf |
Make a Submission
Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025" INDEXED IN:
|
|
|
|
|
|
|
|
|
|
|
|
|