Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425

Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

Modeling the Interaction of Forest Machines with Soil when Working on Slopes

Версия для печати

S.E. Rudov, V.Ya. Shapiro, I.V. Grigorev, O.A. Kunitskaya, O.I. Grigoreva

Complete text of the article:

Download article (pdf, 0.7MB )

UDС

630*372/375

Abstract

The urgency of the task of effective development of cutting areas on the slopes of mountains, hills, and hilly-ridge reliefs is primarily due to the depletion of available, special, lowland operational forests in Siberia and the Far East, which were once, not quite correctly, called forest-surplus regions of the Russian Federation. The operational woodlands that are convenient for development in Siberia and the Far East are largely depleted. To develop new ones, large-scale road construction is necessary, which requires significant financial expenses and reduces the already low profitability of logging production. It is also declining due to the ever-increasing volume of export of harvested timber, even if the cost of construction and maintenance of a new network of logging roads is not considered. Forest ecosystems located on slopes are among the most vulnerable. When working on the slopes with traditional systems of logging machines, it becomes necessary to cut a serpentine of skid trails, which later become concentrators of water and wind erosion. Currently, leading manufacturers of machinery and equipment for the forest industry, such as Ponsse, John Deer, Komatsu, and others, have developed technical solutions that significantly facilitate the operation of forest machine systems. Such solutions, first of all, include winches integrated into the transmissions of machines. Another solution is to use separate self-propelled winches remotely controlled by the operator of a forest machine, for example, T-winch. In this case, the machine does not receive additional weight from the winch integrated into it; however, the negative impact of forest machines on soils does not disappear, but has its own significant specifics. The article shows that when performing logging operations on slopes, primarily steep ones with slope angles exceeding 20–25°, it is necessary to make adjustments to the assessment of the destruction nature of the soil array and the patterns of the track depth formation under the influence of the skidding system.

Authors

Sergey E. Rudov1, Candidate of Engineering; ResearcherIDAAC-9563-2020, ORCID: https://orcid.org/0000-0002-9900-0929
Vladimir Ya. Shapiro2, Doctor of Engineering, Prof.; ResearcherIDAAC-9658-2020, ORCID: https://orcid.org/0000-0002-6344-1239
Igor V. Grigorev3, Doctor of Engineering, Prof.; ResearcherIDS-7085-2016, ORCID: https://orcid.org/0000-0002-5574-1725
Olga A. Kunitskaya3, Doctor of Engineering, Prof.; ResearcherID: AAC-9568-2020, ORCID: https://orcid.org/0000-0001-8542-9380
Olga I. Grigoreva2, Candidate of Agriculture, Assoc. Prof.; ResearcherIDAAC-9570-2020, ORCID: https://orcid.org/0000-0001-5937-0813

Affiliation

1Military Academy of Communications named after Marshal of the Soviet Union S.M. Budyonny, Tikhoretskiy prosp., 3, K-64, Saint Petersburg, 194064, Russian Federation; e-mail: 89213093250@mail.ru
2Sаint-Petersburg State Forest Technical University named after S.M. Kirov, Institutskiy per., 5, Saint Petersburg, 194021, Russian Federation; e-mail: shapiro54vlad@mail.rugrigoreva_o@list.ru
3Arctic State Agrotechnological University, 3-y km, sh. Sergelyakhskoye, 3, Yakutsk, Republic of Sakha (Yakutia), 677007, Russian Federation; e-mail: silver73@inbox.ruola.ola07@mail.ru

Keywords

forests on slopes, logging, forest machines, skidding systems, soil compaction, soil deformation

For citation

Rudov S.E., Shapiro V.Ya., Grigorev I.V., Kunitskaya O.A., Grigoreva O.I. Modeling the Interaction of Forest Machines with Soil when Working on Slopes. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 6, pp. 121–134. DOI: 10.37482/0536-1036-2021-6-121-134

References

1. Абузов А.В. Перспективность внедрения и эксплуатации современных аэростатных систем трелевки // Наука – Хабаровскому краю: материалы 8-го краевого конкурса-конф. молодых ученых и аспирантов (секция техн. наук). Хабаровск: ТОГУ, 2006. С. 144–154. Abuzov A.V. Prospects for the Introduction and Operation of Modern Balloon Skidding Systems. Science to Khabarovsk Krai: Proceedings of the 8th Regional Competition-Conference of Young Scientists and Postgraduate Students (Section of Engineering Sciences). Khabarovsk, PNU Publ., 2006, pp. 144–154.

2. Абузов А.В. Альтернативные транспортные системы как направление рационального лесозаготовительного процесса // Актуальные проблемы развития лесного комплекса. Вологда: ВоГТУ, 2012. С. 60–63. Abuzov A.V. Alternative Transport Systems as a Direction of Rational Logging Process. Current Issues of the Forest Complex Development. Vologda, VSTU Publ., 2012, pp. 60–63.

3. Абузов А.В. Основные технологические направления по освоению горных лесов Дальневосточного региона // Вестн. ТОГУ. 2013. № 3(30). С. 91–100. Abuzov A.V. The Basic Technological Directions on the Development of Mountain Forests of the Far East Region. Vestnik TOGU [Bulletin of PNU], 2013, no. 3(30), pp. 91–100.

4. Абузов А.В., Григорьев И.В. Конструктивные особенности канатных лесотранспортных систем на мягких пневматических опорах // Лесотехн. журн. 2020. Т. 10, № 1(37). С. 86–95. Abuzov A.V., Grigoryev I.V. Design Features of Cable Forestry Systems on Soft Pneumatic Supports. Lesotekhnicheskiy zhurnal [Forestry Engineering Journal], 2020, vol. 10, no. 1(37), pp. 86–95. DOI: https://doi.org/10.34220/issn.2222-7962/2020.1/9

5. Абузов А.В., Рябухин П.Б. Аэростатный транспорт для горных лесозаготовок в условиях Дальнего Востока. Хабаровск: ТОГУ, 2013. 199 с. Abuzov A.V., Ryabukhin P.B. Balloon Transport for Mountain Logging in the Far East. Khabarovsk, PNU Publ., 2013. 199 p.

6. Агейкин Я.С. Вездеходные колесные и комбинированные движители. М.: Машиностроение, 1972. 183 с. Ageykin A.S. All-Terrain Wheeled and Combined Propulsors. Moscow, Mashinostroyeniye Publ., 1972. 183 p

7. Адамов Д.В., Любавский Н.А., Галактионов О.Н., Кузнецов А.В. К вопросу моделирования и оценки взаимодействия траков съемных гусениц противоскольжения с грунтом // Междунар. журн. приклад. и фундам. исследований. 2018. № 1. С. 11–15. Adamov D.V., Lyubavskiy N.A., Galaktionov O.N., Kuznetsov A.V. Simulation and Evaluation of Interaction of the Anti-Sliding Removable with Ground. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy [International Journal of Applied and Fundamental Research], 2018, no. 1, pp. 11–15.

8. Андреев В.Н., Галактионова Т.Ф., Перфильева В.И., Щербаков И.П. Основные особенности растительного покрова Якутской АССР. Якутск: ЯФ СО АН СССР, 1987. 156 с. Andreyev V.N., Galaktionova T.F., Perfil’yeva V.I., Shcherbakov I.P. Main Features of Vegetation Cover of the Yakut ASSR. Yakutsk, YaF SO AN SSSR Publ., 1987. 156 p.

9. Анисимов Г.М., Большаков Б.М. Основы минимизации уплотнения почвы трелевочными системами. СПб.: ЛТА, 1998. 106 с. Anisimov G.M., Bol’shakov B.M. Fundamentals of Minimizing Soil Compaction by Skidding Systems. Saint Petersburg, LTA Publ., 1998. 106 p.

10. Галактионов О.Н. Методика расчета площади пятна контакта шины лесозаготовительной машины // Актуальные направления научных исследований XXI века: теория и практика. 2015. Т. 3, № 4-1(15-1). С. 24–27. Galaktionov O.N. Methods of Determining the Area of the Tire Contact Patch Logging Machines. Aktual’nye napravlenia naucnyh issledovanij XXI veka: teoria i praktika [Current Directions of Scientific Research of the XXI Century: Theory and Practice], 2015, vol. 3, no. 4-1(15-1), pp. 24–27. DOI: https://doi.org/10.12737/13878

11. Карпачев С.П., Шевелев И.Л., Щербаков Е.Н. Технология механизированных лесозаготовок на крутых склонах // Лесопромышленник. 2012. № 4(64). С. 26–29. Karpachev S.P., Shevelev I.L., Shcherbakov E.N. Technology of Mechanized Logging on Steep Slopes. Lesopromyshlennik [The Timber Industry Worker], 2012, no. 4(64), pp. 26–29.

12. Рябухин П.Б., Казаков Н.В., Абузов А.В. Анализ состояния и перспектив развития лесопромышленного комплекса Дальневосточного федерального округа. Хабаровск: ТОГУ, 2013. 207 с. Ryabukhin P.B., Kazakov N.V., Abuzov A.V. Analysis of the State and Prospects for the Timber Industry Complex Development of the Far Eastern Federal District. Khabarovsk, PNU Publ., 2013. 207 p.

13. Шапиро В.Я., Григорьев И.В., Жукова А.И. Особенности динамического уплотнения почвы при ее циклическом нагружении // Актуальные проблемы современной науки. 2006. № 3(29). С. 301–309. Shapiro V.Ya., Grigor’yev I.V., Zhukova A.I. Features of Soil Dynamic Compaction under Its Cyclic Loading. Aktual’nyye problemy sovremennoy nauki, 2006, no. 3(29), pp. 301–309.

14. Шапиро В.Я., Григорьева О.И., Григорьев И.В., Григорьев М.Ф. Теоретическое исследование процесса разрушения массива грунта сферическими ножами при использовании комбинированных конструкций грунтометов для тушения лесных пожаров // Изв. вузов. Лесн. журн. 2018. № 1. С. 61–69. Shapiro V.Ya., Grigor’eva O.I., Grigor’ev I.V., Grigor’ev M.F. Theoretical Study of the Soil Mass Destruction Process by Spherical Knives when Using Combined Forest Fire-Fighting Soil-Thrower Constructions. Lesnoy Zhurnal [Russian Forestry Journal], 2018, no. 1, pp. 61–69. DOI: https://doi.org/10.17238/issn0536-1036.2018.1.61

15. Contreras M.A, Parrott D.L., Chung W. Designing Skid-Trail Networks to Reduce Skidding Costs and Soil Disturbance for Ground-Based Timber Harvesting Operations. Forest Science, 2016, vol. 62, iss. 1, pp. 48–58. DOI: https://doi.org/10.5849/forsci.14-146

16. Di Gironimo G., Balsamo A., Esposito G., Lanzotti A., Melemez K., Spinelli R. Simulation of Forest Harvesting Alternative Processes and Concept Design of an Innovative Skidding Winch Focused on Productivity Improvement. Turkish Journal of Agriculture and Forestry, 2015, vol. 39, pp. 350–359. DOI: https://doi.org/10.3906/tar-1408-64

17. d’Oliveira M.V.N. Artificial Regeneration in Gaps and Skidding Trails after Mechanized Forest Exploitation in Acre, Brazil. Forest Ecology and Management, 2000, vol. 127, iss. 1-3, pp. 67–76. DOI: https://doi.org/10.1016/S0378-1127(99)00117-6

18. Gilanipoor N., Najafi A., Heshmat Alvaezin S.M. Productivity and Cost of Farm Tractor Skidding. Journal of Forest Science, 2012, vol. 58, no. 1, pp. 21–26. DOI: https://doi.org/10.17221/4804-JFS

19. Glazar K., Maciejewska M. Ecological Aspects of Wood Harvesting and Skidding in Pine Stands with Use Different Technologies. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria, 2009, vol. 8, pp. 5–14.

20. Jourgholami M. Effects of Soil Compaction on Growth Variables in Cappadocian Maple (Acer cappadocicum) Seedlings. Journal of Forestry Research, 2018, vol. 29, pp. 601– 610. DOI: https://doi.org/10.1007/s11676-017-0491-7

21. Kremers J., Boosten M. Soil Compaction and Deformation in Forest Exploitation. Wageningen, Netherlands, Stichting Probos, 2018. 53 p.

22. Rudov S., Grigorev I., Kunickaya O., Ivanov N., Kremleva L., Myuller O., Hertz E., Chemshikova Yu., Teterevleva E., Knyazev A. Method of Variational Calculation of Influence of the Propulsion Plants of Forestry Machines upon the Frozen and Thawing Soil Grounds. International Journal of Advanced Science and Technology, 2019, vol. 28, no. 9, pp. 179–197.

23. Rudov S., Shapiro V., Grigorev I., Kunickaya O., Druzyanova V., Kokieva G., Filatov A., Sleptsova M., Bondarenko A., Radnaed D. Specific Features of Influence of Propulsion Plants of the Wheel-Tyre Tractors upon the Cryomorphic Soils, Soils, and Soil Grounds. International Journal of Civil Engineering and Technology, 2019, vol. 10, iss. 1, pp. 2052–2071.


Modeling the Interaction of Forest Machines with Soil when Working on Slopes

 

Make a Submission


ADP_cert_2025.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png