Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425
Phone: +7 (8182) 21-61-18 Lesnoy Zhurnal |
V.P. Sivakov, A.V. Vurasko, N.V. Kutsubina Complete text of the article:Download article (pdf, 0.6MB )UDС676.056.5AbstractThe research purpose is to develop methods for determination of heat losses in drying cylinders. Experimental study of temperature of drying cylinders performed in the drying section of a paper machine during its steady-state operation. Medium, maximum and permissible statistical characteristics of drying cylinder temperatures were defined. The drying cylinders with increased condensation concentration were determined by the minimally permissible temperature levels and the repair of the condensation drainage system to reduce heat losses (steam consumption) was justified. The cause of uneven dryness of the paper web across the width has been determined. The condensate ring on the inner wall at the edges of the drying cylinders gets thickened due to moisture coming from the end caps from the action of centrifugal forces. The condensation is removed from the drying cylinders with a siphon on the drive side. Therefore, on the front side of the drying cylinders condensate film has a greater thickness, and the paper web dries worse. The single-sided condensate disposal and the physical effect of centrifugal condensate runoff from the end caps to the side inner surface of the drying cylinders cause a lower dryness from the front side of the paper web. The use of thermal insulation of end caps will contribute to uniform dryness across the width of the paper web. The results of experimental studies were processed by methods of mathematical statistics in order to describe the thermal losses during contact drying of the paper web on drying cylinders with and without thermal insulation of the end caps to the ambient air. The calculation of heat losses is carried out according to the refined method of researching thermal processes in contact drying of paper web. It is found, that the use of thermal insulation of the end caps of the drying cylinders provides a reduction in steam consumption for contact drying of the paper web without affecting the technological process. The research results can be used to reduce heat losses in the drying section of paper machines on cylinders that do not have thermal insulation of the end caps. For instance, for a paper machine consisting of 56 cylinders with a diameter of 1500 mm and a capacity of 7000 kg/h of absolutely dry paper, insulating their end caps saves up to 223 kg/h of steam for drying the paper web. Methods of detection of drying cylinders with increased content of condensation on permissible levels of temperature is developed and approved. A refined method for determining thermal losses during contact drying of the paper web on drying cylinders has been developed.AuthorsValeriy P. Sivakov, Doctor of Engineering, Prof.;ResearcherID: AAC-6084-2021, ORCID: https://orcid.org/0000-0002-9387-1512 Alesya V. Vurasko, Doctor of Engineering, Prof.; ResearcherID: AAC-5594-2021, ORCID: https://orcid.org/0000-0002-9471-085X Nelli V. Kutsubina, Candidate of Engineering, Assoc. Prof.; ResearcherID: AAC-4846-2021, ORCID: https://orcid.org/0000-0002-0438-406X AffiliationUral State Forest Engineering University, ul. Sibirskiy trakt, 37, Yekaterinburg, 620100, Russian Federation; e-mail: vurasko2010@yandex.ru, sivakov.VP@usfeu.ru, Nelly3416@mail.ruKeywordsdrying cylinder, temperature of end cups, diagnosis, heat capacity, cooling, thermal insulation, heat losses, savingFor citationSivakov V.P., Vurasko A.V., Kutsubina N.V. Experimental and Theoretical Study of Heat Losses in Drying Cylinders. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 2, pp. 169–179. DOI: 10.37482/0536-1036-2021-2-169-179References
Experimental and Theoretical Study of Heat Losses in Drying Cylinders |
Make a Submission
Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025" INDEXED IN:
|
|
|
|
|
|
|
|
|
|
|
|
|