Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425

Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

Power Characteristics of Mulcher Joints When Removing Tree and Shrub Vegetation

Версия для печати

S.Ye. Ariko, S.A. Voinash, D.A. Kononovich, V.A. Sokolova

Complete text of the article:

Download article (pdf, 0.8MB )

UDС

630*36/.37:630.383(047.31)

Abstract

In recent years, the enterprises of forestry and the Ministry of Energy of the Republic of Belarus and other countries widely implemented advanced milling tools designed to chop wood, stumps and roots without immersing the cutter in the soil (mulchers) and with immersion (rotovators), which allows you to prepare the ground for planting forest crops. They can be mounted on multi-purpose tractors, loaders and excavators. At the same time, there are no methods that allow carrying out a reasonable choice of technological equipment for a particular basic machine, since a significant number of production, technological and technical factors have an impact on the emerging power and capacity parameters. The proposed method allows taking into account a significant number of variable values (working methods, speeds of various operations, parameters of the working body, its drive and base chassis, soil conditions, etc.) and simulate the interaction of milling tools under various operating conditions. It was found that the greatest loads on the mulcher rotor occur during the felling of tree and shrub vegetation, which is associated with an increase in the area of interaction between the cutters and the wood up to 2 times compared with the chopping of similar lying stands. This value can be reduced by 15–30 % depending on the diameter of the trunks being processed. In the case of a significant amount (cluster) of forest stands with a diameter of more than 10 cm, it is preferable to carry out work at a speed of about 0.2 m/s or advanced felling of these trees. The use of hydraulic travel (speed) reducers or hydrostatic transmission is promising in order to reduce dynamic loads and get better adaptability of the working equipment to natural-production conditions (the ability to work at a speed from 0 to 5 km/h). It should be noted that the installed required engine power for the milling equipment drive should be increased by 10–15 % due to the needs of the drive of various equipment located on the base chassis. Also, in the case of the integrated use of tree and shrub vegetation, it is possible to use mulchers that collect biomass; however, this will require additional energy costs. In this regard, the method can be applied when choosing the parameters of technological equipment for the existing base chassis, to solve the inverse problem, and also to select the operating mode of the milling equipment depending on the natural and production conditions with the possibility of subsequent prediction of the effectiveness of the work performed.

Authors

Sergey Ye. Ariko1, Candidate of Engineering, Assoc. Prof.; ResearcherID: AAK-2167-2020,
ORCID: https://orcid.org/0000-0001-6812-8842
Sergey A. Voinash2, Engineer; ResearcherID: AAK-2987-2020,
ORCID: https://orcid.org/0000-0001-5239-9883
Denis A. Kononovich1, Postgraduate Student; ResearcherID: AAK-2583-2020,
ORCID: https://orcid.org/0000-0001-6947-0674
Viktoria A. Sokolova3, Candidate of Engineering, Assoc. Prof.;
ResearcherID: AAK-6062-2020, ORCID: https://orcid.org/0000-0001-6880-445X

Affiliation

1Belarusian State Technological University, ul. Sverdlova, 13a, Minsk, 220006, Republic of Belarus; e-mail: sergeyariko@mail.ru, denkon_92@mail.ru
2Novosibirsk State Agrarian University, ul. Dobrolyubova, 160, Novosibirsk, 630039, Russian Federation; e-mail: sergey_voi@mail.ru
3St. Petersburg State Forest Engineering University named after S.M. Kirov, Institutskiy per., 5, Saint Petersburg, 194021, Russian Federation; e-mail: sokolova_vika@inbox.ru

Keywords

reforestation, chopping of tree and shrub vegetation, milling tool, mulcher, base chassis, exploitation conditions

For citation

Ariko S.Ye., Voinash S.A., Kononovich D.A., Sokolova V.A. Power Characteristics of Mulcher Joints When Removing Tree and Shrub Vegetation. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 2, pp. 130–142. DOI: 10.37482/0536-1036-2021-2-130-142

References

  1. Abdrazakov F.K., Potapov I.N., Marayev V.N. Promising Technologies and Means for Removing Tree and Shrub vegetation. Mekhanizatsiya stroitel’stva [Construction mechanization], 2007, no. 4, pp. 13–17.
  2. Ariko S.Ye., Mokhov S.P., Simanovich V.A., Dudko Ye.M. The Use of Milling Equipment in the Forest Complex of the Republic of Belarus. Proceedings of the International Scientific and Technical Conference “Materials, Equipment and Resource-Saving Technologies. Mogilev, BRU Publ., 2017, pp. 197–198.
  3. Ariko S.Ye., Simanovich V.A., Mokhov S.P., Golyakevich S.A., Kononovich D.A., Dudko Ye.M, Putrich A.Yu. Forestry Machine. Patent BY, no. 11798, 2018.
  4. Asmolovskiy M.K., Zhukov A.V., Loy V.N. Mechanization of Forestry and Landscape Gardening. Minsk, BGTU P, 2004. 506 p.
  5. Voinash S.A., Voinash A.S. The System of Unified Vehicles Based on the Crawler Forwarder LZ-5. Stroitel’nyye i dorozhnyye mashiny [Construction and Road Building Machinery], 2013, no. 12, pp. 6–9.
  6. Voinash S.A., Kononovich D.A., Ariko S.E., Sokolova V.A. Theoretical Bases of Evaluating the Efficiency of Using Machines for the Transportation of Logging Wastes. Collection of Academic Papers of the All-Russian Scientific and Practical Conference “Forest Exploitation and Integrated Use of Wood”. Krasnoyarsk, SibSAU Publ., 2020, pp. 48–55.
  7. Glebov I.T. Wood Processing by Milling Method. Yekaterinburg, USFEU Publ., 2007. 192 p.
  8. Ivashnev M.V., Shegelman I.R. Technology for Protection of Power Transmissions from Trees and Bushes Using Brush Cutter with Active Working Body. Global’nyy nauchnyy potentsial [Global Scientific Potential], 2012, no. 4(13), pp. 105–107.
  9. Naumov E.S, Parfenov A.P., Sharipov V.M, Eglit I.M. Working Equipment of Tractors. Moscow, MAMI Publ., 1999. 89 p.
  10. Orlovskiy S.N., Karnaukhov A.I. Application and Configuration Technology of the Stump Lowering Device. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 3, pp. 123–131. DOI: 10.17238/issn0536-1036.2017.3.123, URL: http://lesnoizhurnal.ru/upload/iblock/111/2_orlovskiy.pdf
  11. Peshkov A.A., Gordeev M.P., Syrovatski S.O. The Construction of 3D Models Mulcher in the CAD System. Proceedings of the All-Russian Scientific and Practical Conference of Students, Postgraduate Students and Young Scientists “Young Scientists in Solving Urgent Problems of Science”. Krasnoyarsk, SibSAU Publ., 2017, pp. 496–498.
  12. Tikachev V. Mulchers and Stump Grinders. LesPromInform, 2010, no. 4(70), pp. 76–81.
  13. Alekseeva S.V., Sokolova V.A., Markov V.A. Mathematical Modeling of One Type of Three-Link Robot Manipulator. IOP Conference Series: Earth and Environmental Science, 2020, vol. 421, iss. 4, art. 042005. DOI: 10.1088/1755-1315/421/4/042005
  14. Arpit K., Satish M., Mukesh J. Performance Evaluation of Tractor PTO Operated Rotary Mulcher. Journal of Pharmacognosy and Phytochemistry, 2018, vol. 7, iss. 6, pp. 1113–1115. DOI: 10.22271/phyto
  15. Čedík J., Pexa M., Pražan R., Kubín K., Vondřička J. Mulcher Energy Intensity Measurement in Dependence on Performance. Agronomy Research, 2015, vol. 13, no. 1, pp. 46–52.
  16. Khafizov C.A., Khafizov R.N., Nurmiev A.A., Galiev I.G. Justification of the Optimal Annual Load on the Tractor Providing for Its Parameters Stress on the Formed Crop. BIO Web of Conferences, 2020, vol. 17, art. 00022. DOI: 10.1051/bioconf/20201700022
  17. Kumhála F., Chyba J., Pexa M., Čedík J. Measurement of Mulcher Power Input in Relation to Yield. Agronomy Research, 2016, vol. 14, no. 4, pp. 1380–1385.
  18. Ľuptáčiková V., Ťavodová M. Methods for Increasing the Material Resistance of the Mulching Tool Body Against Its Deformation in Operation. Technological Engineering, 2017, vol. XIV, no. 2/2017, pp. 17–20. DOI: 10.1515/teen-2017-0015
  19. Savchenkova V.A., Korshunov N.A., Perminov A.V., Voinash S.A. The Problem of Fire Fighting during the Hours of Darkness. IOP Conference Series: Earth and Environmental Science, 2020, vol. 421, art. 062002. DOI: 10.1088/1755-1315/421/6/062002
  20. Ťavodová M., Kalincová D., Kotus M., Pavlík Ľ. The Possibility of Increasing the Wearing Resistance of Mulcher Tools. Acta Technologica Agriculturae, 2018, vol. 21, iss. 2, pp. 87–93. DOI: 10.2478/ata-2018-0016
  21. Verma A., Singh Ar., Singh Am., Sidhu S.G., Dixit An. Performance Evaluation of Tractor Operated Paddy Straw Mulcher. Journal of Krishi Vigyan, 2016, vol. 4, iss. 2, pp. 70–75. DOI: 10.5958/2349-4433.2016.00016.7
  22. Zimelis А., Sisenis L., Sarmulis Z., Ariko S. Technology and Energy Balance in Stump Harvesting with MCR500. Engineering for Rural Development, 2018, pp. 1395–1400. DOI: 10.22616/ERDEV2018.17.N162

Power Characteristics of Mulcher Joints When Removing Tree and Shrub Vegetation

 

Make a Submission


ADP_cert_2025.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png