Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425
Phone: +7 (8182) 21-61-18 Lesnoy Zhurnal |
E.V. Robonen, N.P. Chernobrovkina, M.I. Zaitseva, B.V. Raevsky, A.V. Egorova, G.N. Kolesnikov Complete text of the article:Download article (pdf, 0.9MB )UDС630*236:582.475:577.112.385.2DOI:10.37482/0536-1036-2020-5-9-37AbstractForests produce a huge amount of organic matter, which is a source of renewable raw materials for the production of technical, feed, food and pharmaceutical products. The logging and woodworking industry in Karelia, as in Russia as a whole, is based exclusively on stem wood. Woody greens are formed while felling ripe and over-mature stands, thinning and implementation of measures for the conservation, protection and reproduction of forests including forest stands cutting. The development of technologies for the use of woody greens is necessary for the multi-purpose utilization of the entire phytomass produced by forest plant communities. An additional economic incentive for young stands thinning and limbing, that are used to improve the quality of logs, is the ability to reduce costs or even ensure the profitability of these measures driven by the development of processing plants and the use of wastes generated during transportation: thinners, low-quality and low-value decidous wood, woody greens, that are raw materials for the production of biologically active preparations of various action. The urgent tasks are to increase the use of importsubstituting pharmaceutical substances and to search the alternative methods for producing raw materials for nutrient mixtures and feed stuff. Technologies for modifying the biochemical composition of coniferous greens, resulting in production of plant raw materials enriched with target biologically active substances, are being developed for the exploration of new plant sources. The water-soluble fraction of coniferous greens contains free amino acids, in particular L-arginine, which plays an important role in the life of animals. A promising way is to increase the free amino acids content in coniferous raw materials and change their quantitative ratio by regulation of the mineral nutrition regime of woody plants. An original scheme of additional supply of coniferous plants with nitrogen and boron is proposed in order to obtain coniferous greens enriched with L-arginine. The use of conifers as bioproducers of L-arginine and the study of its metabolism with reference to climatic factors, conditions of mineral nutrition, seasonal and daily dynamics in the natural environment, the search for ways to increase its level in organs and tissues is of current interest both on the theoretical and practical sides. Obtaining coniferous greens enriched with L-arginine will allow organizing the production of coniferous products for nutrient and pharmaceutical use. It is necessary to analyze the potential sources of raw materials taking into account their availability, costs for enriching the needles with L-arginine and product yield per unit area to assess the economic feasibility of organizing such production. A developed sequence of forestry measures will make it possible to obtain needles enriched with L-arginine, both in the process of implementing various types of forest use, and in carrying out activities aimed at increasing the productivity of forests and preserving their useful functions. Herewith, it is possible to turn costly cleaning and fertilizing of young Scots pine stands into profitable ones with additional products. Technologies of intentional changes in the chemical composition and pharmacological properties of plant raw materials obtained from woody plants will allow the development of new raw materials for biologically active substances.AuthorsE.V. Robonen1, Research Scientist; ResearcherID: AAD-1958-2019,ORCID: https://orcid.org/0000-0001-7926-8672 N.P. Chernobrovkina1, Doctor of Biology, Assoc. Prof.; ResearcherID: K-6120-2018, ORCID: https://orcid.org/0000-0002-9716-003X M.I. Zaitseva2, Candidate of Engineering; ResearcherID: P-2238-2015, ORCID: https://orcid.org/0000-0003-4209-2815 B.V. Raevsky1, Doctor of Agriculture; ResearcherID: K-6424-2018, ORCID: https://orcid.org/0000-0002-1315-8937 A.V. Egorova1, Junior Research Scientist; ResearcherID: K-6095-2018, ORCID: https://orcid.org/0000-0002-1691-1269 G.N. Kolesnikov2, Doctor of Engineering, Prof.; ResearcherID: A-1553-2014, ORCID: https://orcid.org/0000-0001-9694-0264 Affiliation1Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences, ul. Pushkinskaya, 11, Petrozavodsk, Republic of Karelia, 185910, Russian Federation; e-mail: er51@bk.ru, chernobr@krc.karelia.ru, egorova.anast@mail.ru2Petrozavodsk State University, ul. Lenina, 33, Petrozavodsk, Republic of Karelia, 185910, Russian Federation; e-mail: 2003bk@bk.ru, kolesnikovgn@yandex.ru Keywordsforest crops, thinning, nitrogen, boron, fertilizers, Scots pine, woody greens, L-arginine, efficient use of resourcesFor citationRobonen E.V., Chernobrovkina N.P., Zaitseva M.I., Raevsky B.V., Egorova A.V., Kolesnikov G.N. Obtaining Woody Greens Enriched with L-Arginine during Forestry Management of Young Scots Pine Stands (Scientific Review). Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 5, pp. 9–37. DOI: 10.37482/0536-1036-2020-5-9-37References1. Alaudinova E.V., Mironov P.V. Free Amino Acids of the Vegetative Organs of Picea obovata L. and Pinus sylvestris L. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2017, no. 3, pp. 85–91. DOI: 10.14258/jcprm.20170317632. Antonov A.M. The Wood Macrostructure Variability of the Pine Grown with the Fertilizer Use. Vestnik KrasGAU [The Bulletin of KrasGAU], 2015, no. 1, pp. 179–183. 3. Antonov O.I. Qualitative Productivization of Forest Stands is the Goal of Intensive Forestry. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 1, pp. 86–94. DOI: 10.17238/issn0536-1036.2017.1.86, URL: http://lesnoizhurnal.ru/upload/iblock/63f/antonov.pdf 4. Babich N.A., Klevtsov D.N. Reserve of Energy in Pine Cultures. Vestnik Moskovskogo gosudarstvennogo universiteta lesa – Lesnoy vestnik [Forestry Bulletin], 2012, no. 1, pp. 38–41. 5. Babich N.A., Klevtsov D.N., Evdokimov I.V. Zonal Patterns of Change in the Pine Phytomass. Arkhangelsk, NArFU Publ., 2010. 140 p. 6. Babich N.A., Melekhov V.I., Antonov A.M., Klevtsov D.N., Konovalov D.Yu. The Influence of Site Conditions on the Quality of Pine Wood (Pinus sylvestris L.) in Plantings. Hvojnye boreal’noj zony [Conifers of the boreal area], 2007, vol. 24, no. 1, pp. 54–58. 7. Babich N.A., Merzlenko M.D., Evdokimov I.V. Phytomass of Pine and Spruce in European Russia. Arkhangelsk, Severo-Zapadnoye knizhnoye izdatel’stvo, 2004. 108 p. 8. Balykov N.G., Vilikainen L.M., Robonen E.V., Smirnov A.V. Phytomass Distribution in Lichen Pine Forest. Lesovedenie [Russian Journal of Forest Science], 1989, no. 6, pp. 57–63. 9. Bezzubov A.D. Vitamins for Besieged Leningrad. Khimiya i zhizn’, 1985, no. 1. 10. Berestov V.A., Petrova G.G., Izotova S.P. The Use of Woody Greens in Industrial Fur Breeding and Rabbit Breeding. Leningrad, Kolos Publ., 1982. 96 p. 11. Borisov A.Yu. Aspen Wood as Roof Construction Material. Uchenyye zapiski Petrozavodskogo gosudarstvennogo universiteta [Proceedings of Petrozavodsk State University], 2014, no. 8, vol. 1, pp. 87–90. 12. Borisov A.Yu., Kolesnikov G.N. Harvesting Features of Aspen Timber and Processing of Wood Waste to the Landing Logging Companies. Sovremennyye problemy nauki i obrazovaniya [Modern problems of science and education], 2015, no. 1-1, pp. 244–250. 13. Buzykin A.I., Pshenichnikova L.S. Response of Middle-Aged Pineries to Cleaning Cutting. Lesnoy Zhurnal [Russian Forestry Journal], 2009, no. 1, pp. 28–33. URL: http://lesnoizhurnal.ru/upload/iblock/a53/a53089e829e0519a2e7e3b20dca514b2.pdf 14. Bukvareva E., Zamolodchikov D., Gryuneval’d K. Ecosystem Services of Russian landscapes. Novel Methods and Results of Landscape Research in Europe, Central Asia and Siberia: Monograph. In 5 vol. Ed. by V.G. Sychev, L. Muller. Moscow, SBSI «Pryanishnikov Institute of Agrochemistry» Publ., 2018, pp. 57–61. DOI: 10.25680/4053.2018.30.99.006 15. Vasil’yev S.N., Roshchin V.I., Yagodin V.I. Extractive Substances of Pinus sylvestris L. Woody Greens. Rastitelnye Resursy, 1995, vol. 31, iss. 2, pp. 79–119. 16. Gavrilov T.А., Evstigneev V.D., Zaytseva M.I., Kolesnikov G.N., Nikonova Yu.V. The Use of Wood Sawdust for Treatment of Surface Runoff on the Transport Infrastructure. Lesnoy vestnik [Forestry Bulletin], 2018, vol. 22, no. 2, pp. 87–94. DOI: 10.18698/2542-1468-2018-2-87-94 17. Gavrilova O.I., Kishchenko I.T. Influence of Mineral Fertilizers on Scots Pine Growth on South Karelia Sand Soils. Lesnoy Zhurnal [Russian Forestry Journal], 2003, no. 1, pp. 28–33]. URL: http://lesnoizhurnal.ru/upload/iblock/39c/39c4fd9e098303207e6431b88d82373b.pdf 18. Gueles I.S., Korzhova M.A. Resources of Intermediate Forest Utilization and Some of Their Potential Uses. Vestnik Moskovskogo gosudarstvennogo universiteta lesa – Lesnoy vestnik [Forestry Bulletin], 2008, no. 2, pp. 10–15. 19. Guryanov M.O., Antonov O.I. Influence of Pruning in Spruce Plantations on a Form of Butt Length of Trees. Izvestiya Sankt-Peterburgskoj lesotekhnicheskoj akademii [News of the Saint Petersburg State Forest Technical Academy], 2015, iss. 210, pp. 37–46. 20. Dancheva A.V., Zalesov S.V. The Effect of Thinning on the State of Natural Pine Forests. Nauchnyye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Estestvennyye nauki [Scientific bulletins of the Belgorod State University. Series: Natural Sciences], 2016, no. 18(239), iss. 36, pp. 32–38. 21. Dmitrochenko A.P., Pshenichnyy P.D. Feeding Livestock. Leningrad, Sel’khozizdat Publ., 1961. 528 p. 22. Evdokimov I.V. Features of the Aboveground Phytomass Formation in Pine Plantations (Case Study of Arkhangelsk Region): Cand. Agric. Sci. Diss. Abs. Arkhangelsk, 2003. 19 р. 23. Egorova A.V. The Effect of Extracts Made of Woody Greens and Sludge as a Substrate Component on Seed Germination and Growth of Scots Pine Seedlings: Cand. Agric. Sci. Diss. Abs. Saint Petersburg, 2019. 21 p. 24. Egorova A.V., Chernobrovkina N.P., Robonen E.V. Effects of Application of a Conifer-Derived Chemical on the Growth and Elemental Composition of Pinus Sylvestris L. Seedlings in a Forest Nursery. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2017, no. 2, pp. 171–180. DOI: 10.14258/jcprm.2017021720 25. Egorova A.V., Chernobrovkina N.P., Robonen E.V., Zaytseva M.I. The Technique of Water Extract Preparation from Goat Willow Leaves with Allowance for Circadian Rhythm of Their Biological Activity to Stimulate Scots Pine Seed Germination. Fiziologiya rastenij [Russian Journal of Plant Physiology], 2019, vol. 66, no. 5, pp. 394–400. DOI: 10.1134/S0015330319040031 26. Zhukova A.I., Grigorev I.V., Grigoreva O.I., Ledyayeva A.S. Forest Resource Management. Saint Petersburg, SPbGLTA Publ., 2008. 213 p. 27. Zhuravleva L.N. Processing of Coniferous Woody Greens Using Liquefied Hydrocarbons: Cand. Eng. Sci. Diss. Krasnoyarsk, 2005. 145 p. 28. Zaitseva M.I., Robonen E.V., Chernobrovkina N.P. Utilization of Logging Residues in Preparation of Peat Substrates for Closed Root Growing of Scots Pine Seedlings. Vestnik Moskovskogo gosudarstvennogo universiteta lesa – Lesnoy vestnik [Forestry Bulletin], 2010, no. 1, pp. 4–8. 29. Zaitseva M.I., Robonen E.V., Chernobrovkina N.P., Kolesnikov G.N. Recycling of Pine Needles Processing Wastes. Wooden Low-Rise Housing Construction: Economics, Architecture and Resource-Saving Technologies: Proceedings of the International Scientific-Practical Conference (June 23–28, 2013) of PetrSU. Petrozavodsk, Petropress Publ., 2013, pp. 25–30. 30. Zarubina L.V., Konovalov V.N. Impact of Thinning and Nitrogen on Seasonal Dynamics of Pine and Spruce Root Respiration. Lesnoy Zhurnal [Russian Forestry Journal], 2016, no. 1, pp. 100–114. DOI: 10.17238/issn0536-1036.2016.1.100, URL: http://lesnoizhurnal.ru/ upload/iblock/260/zarubina.pdf 31. Zyabchenko S.S., Ivanchikov A.A., Kozlov A.F., Bykov E.N., Sofronova G.I. Wood Greenery is an Important Feed Supplement. Petrozavodsk, Karelia Publ., 1984. 38 p. 32. Ivanov V.V., Borisov A.N., Petrenko A.E. Influence of Stand Density on Crown Formation and Growth along the Diameter of Scots Pine (Pinus sylvestris L.). Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 3, pp. 9–16. DOI: 10.17238/issn0536-1036.2019.3.9, URL: http://lesnoizhurnal.ru/upload/iblock/19e/9_16.pdf 33. Il’intsev A.S., Tret’yakov S.V., Koptev S.V., Fedotov I.V., Ershov R.A. The Current Radial Increment in the Forest Stands after the Improvement Thinning. Lesnoy Zhurnal [Russian Forestry Journal], 2015, no. 6, pp. 66–74. DOI: 10.17238/issn0536-1036.2015.6.66, URL: http://lesnoizhurnal.ru/upload/iblock/459/ilintsev.pdf 34. Kaibiyainen L.K., Khari P., Sazonova T.A., Myakelya A. Balance of Water Transport in Pinus sylvestris L. III. Conducted Xylem Area and Needles Amount. Lesovedenie [Russian Journal of Forest Science], 1986, no. 1, pp. 31–37. 35. Kasimov D.V., Kasimov V.D. Some Approaches to the Assessment of Ecosystem Functions (Services) of Forest Stands in Environmental Management Practice. Moscow, Mir nauki Publ., 2015. 91 p. 36. Klevtsov D.N. Zonal Patterns of Change in the Pine Phytomass: Cand. Agric. Sci. Diss. Abs. Akhangelsk, 2008. 37. Kolesnikov G.N., Kantyshev A.V., Zaitseva M.I., Gavrilov T.A., Nikonova Yu.V. Convective Seasoning of Small Thickness Aspen Workpieces: Model and Experiments. Lesnoy vestnik [Forestry Bulletin], 2019, vol. 23, no. 3, pp. 87–94. DOI: 10.18698/2542-1468-2019-3-87-94 38. Konovalov V.N., Zarubina L.V. Ecological and Physiological Features of Conifers on Fertilized Soils. Arkhangelsk, NArFU Publ., 2011. 338 p. 39. Konovalov V.N., Sadkova A.N., Zarubina L.V. Biology and Growth of Scots Pine in Northern Taiga Phytocenoses. Arkhangelsk, NArFU Publ., 2017. 175 p. 40. The Framework of Intensive Use and Regeneration of Forests. Saint Petersburg, SPbNIILH Publ., 2015. 20 p. 41. Korotky V.P., Velikanov V.I., Bogdanovich N.I., Roshchin V.I., Vodopyanov I.F., Chechet I.V. Development of New Techniques to Produce Pine Resin-Based Drags for Veterinary Medicine. Lesnoy Zhurnal [Russian Forestry Journal], 2012, no. 5, pp. 125–133. URL: http://lesnoizhurnal.ru/upload/iblock/720/X2.pdf 42. Forest Plan of the Republic of Karelia for 2019–2028. Petrozavodsk, 2018. 22 p. 43. Loginov A.A., Lykov I.N., Vasilyeva M.A. The Integrated Assessment of the Value of Forest Ecosystem Services. Problemy regional’noy ekologii [Regional Environmental Issues], 2018, no. 3, pp. 120–124. DOI: 10.24411/1728-323X-2018-13120 44. Makar S.V. Multipurpose Usage of the National Forest Potential in the Context of Innovative Strategy of Russian Economic Development. Vestnik Finansovogo universiteta. [The Bulletin of the Financial University], 2009, no. 6, pp. 43–47. 45. Malakhovets P.M. Forest Crops. Arkhangelsk, NArFU Publ., 2012. 222 p. 46. Moshnikov S.A., Anan’yev V.A., Matyushkin V.A. Accumulation Features of Debris in Mature Pine Forests of Middle Taigain in the Republic of Karelia. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 1, pp. 40–51. DOI: 10.17238/issn0536-1036.2019.1.40, URL: http://lesnoizhurnal.ru/upload/iblock/0fb/40_51.pdf 47. Nemova V.I. Mechanisms to Enhance Integrated Forest Management Concept of Forest Resources Use in Russia. Trendy i upravleniye [Trends and management], 2017, no. 3, pp. 33–59. DOI: 10.7256/2454-0730.2017.3.24161 48. Novitskaya Yu.E., Chikina P.F. Nitrogen Exchange in Pine Trees in the North. Leningrad, Nauka Publ., 1980. 166 p. 49. Fundamentals of Forest Biogeocenology. Ed. by V.N. Sukachev, N.V. Dylis. Moscow, Nauka Publ., 1964. 574 p. 50. Shegelman I.R., Budnik P.V., Kolesnikov G.N., Ivashnev M.V. A Machine for Grinding Standing Trees and Shrubs. Patent RF no. RU 123635 U1, 2013. 51. Zaitseva M.I., Robonen E.V., Kolesnikov G.N., Chernobrovkina N.P., Vasilev S.B. Insulating Fiberboard. Patent RF no. RU 138680 U1, 2014. 52. Korotkij V.P., Prytkov Ju.N., Marisov S.S., Gibalkina N.I., Kistina A.A., Chernobrovkina N.P., Robonen E.V. Coniferous Biologically Active Supplement Enriched with L-Arginine to Increase the Productivity Qualities of Laying Hens. Patent RF no. RU 2515015 C2, 2014. 53. Chernobrovkina N.P., Robonen E.V., Makarova T.N., Unzhakov A.R., Tjutjunnik N.N., Uzenbaeva L.B., Baishnikova I.V. Method of Feeding Fur-Bearing Animals. Patent RF no. RU 2540354 C1, 2015. 54. Zajtseva M.I., Vasilev S.B., Robonen E.V., Lunkov P.V., Kolesnikov G.N. Method for Growing Seedlings of Scots Pine. Patent RF no. RU 2623479 C2, 2017. 55. Egorova A.V., Chernobrovkina N.P., Robonen E.V. Method of Obtaining Growth Stimulator for Scots Pine. Patent RF no. RU 2662999 C1, 2018. 56. Kantyshev A.V., Borisov A.Yu., Kolesnikov G.N., Gavrilov T.A. Method of Wood Impregnation. Patent RF no. RU 2688483 C1, 2019. 57. Pekkoev A.N., Conanov A.S. Grade Defects of Pine and Spruce Round Wood from the Northern and Middle Taiga of Karelia. Resources and Technology, 2018, vol. 15, no. 2, pp. 33–44. DOI: 10.15393/j2.art.2018.4121 58. Plemenkov V.V. Natural Compounds – Basic in Searching for Chemotherapeutic Substances. Advances in Chemistry and Chemical Engineering of Bioorganic Materials: Proceedings of the 4th All-Russian Conference, Barnaul, April 21–23, 2009. In 2 books. Ed. by N.G. Bazarnova, V.I. Markin. Barnaul, ASU Publ., 2009, book 2, pp. 11–14. 59. Rechkina E.A., Gubanenko G.A., Rubchevskaya L.P. Isolation of Pectin Substances from Woody Greens of Scots Pine. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2010, no. 4, pp. 189–190. 60. Robonen E.V., Chernobrovkina N.P., Makarova T.N., Korotky V.P., Prytkov Yu.N., Marisov S.S. Accumulation of L-Arginine in Scots Pine Needles and Its Distribution over the Crown Under Regulation of Nitrogen and Boron Supply. Lesnoy Zhurnal [Russian Forestry Journal], 2014, no. 3, pp. 67–78. URL: http://lesnoizhurnal.ru/upload/iblock/ff7/lkh7.pdf 61. Robonen E.V., Chernobrovkina N.P., Chernyshenko O.V., Zaitseva M.I. Sources of Foliage for Arginine Immunostimulant Manufacturing. Vestnik Moskovskogo gosudarstvennogo universiteta lesa – Lesnoy vestnik [Forestry Bulletin], 2012, no. 3, pp. 11–15. 62. Robonen E.V., Chernobrovkina N.P., Chernyshenko O.V., Zaytseva M.I., Unzhakov A.R., Egorova A.V. Perspectives of Wood-Greenery Biotechnology Enrichment with L-Arginine and Inhibitors of Its Catabolism. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material, 2019, no. 1, pp. 23–37. DOI: 10.14258/jcprm.2019014243 63. Safin R.G., Sattarova Z.G., Khabibullin I.G., Ziatdinov R.R., Stepanova T.O. Current Trends in Forest Resources Processing. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of the Technological University], 2015, vol. 18, no. 21, pp. 90–93. 64. Sennov S.N. Effect of Thinning on the Final Growing Stock of Stand. Trudy Sankt-Peterburgskogo nauchno-issledovatel’skogo instituta lesnogo khozyaystva [Proceedings of the Saint Petersburg Forestry Research Institute], 2012, no. 1-2, pp. 8–10. 65. Sin’kevich S.M. Effect of Thinning on the Growth of Pine Stands. Silvicultural and Ecological Aspects of Economic Activities in Forests of Karelia. Petrozavodsk, KarRC RAS Publ., 2005, pp.101–122. 66. Slavyanskiy A.K., Sharkov V.I., Liverovskiy A.A., Buyevskoy A.V., Mednikov F.A., Lyamin V.A., Solodkiy F.T., Tsatska E.M., Dmitriyeva O.A., Nikandrov B.F. Chemical Technology of Wood. Moscow, Goslesbumizdat Publ., 1962. 214 p. 67. Sokolov A.I., Pekkoev A.N., Kharitonov V.A. Effect of Regularly Repeated Applications of Nitrous Fertilizers on Timber Quality in Scots Pine Crops. Uspekhi sovremennogo estestvoznaniya [Advances in current natural sciences], 2016, no. 11, pp. 75–79. 68. Sokolov A.P., Syunev V.S. Logistic Approach to the Determination of Technologies and Parameters of the Forest Resources Multipurpose Use. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2017, no. 3(35), pp. 100–106. DOI: 10.18324/2077-5415-2017-3-100-106 69. Stepanov V.I., Mezina N.A. Forest Industry Wastes and Their Use in the National Economy. Vestnik Rossijskogo ekonomicheskogo universiteta imeni G.V. Plekhanova [Vestnik of the Plekhanov Russian University of Economics], 2012, no. 3, pp. 83–88. 70. Development Strategy of the Forest Complex of the Russian Federation until 2030. Order of the Government of the Russian Federation No. 1989-р Dated September 20, 2018. Moscow, 2018. 102 p. 71. Saduchkova N.E., Milyutina I.L., Semenova G.P. Content and Composition of Free Amino Acids in Different Parts and Tissues of Pinus sylvestris L., Larix sibir1ca Ledeb. and L. gmel1nii (Rupr.) Rupr. Rastitelnye Resursy, 2003, vol. 39(1), pp. 19–31. 72. Teben’kova D.N., Lukina N.V., Chumachenko S.I., Danilova M.A., Kuznetsova A.I. Gornov A.V., Shevchenko N.E., Kataev A.D., Gagarin Yu.N. Multifunctionality and Biodiversity of Forest Ecosystems. Lesovedenie [Russian Journal of Forest Science], 2019, no. 5, pp. 341–356. DOI: 10.1134/S0024114819050115 73. Tret’yakov S.V. Formation Dynamics and Productivity of Mixed Pine Stands in the Middle Taiga Subzone of the European North of Russia: Dr. Agric. Sci. Diss. Abs. Arkhangelsk, 2011. 43 p. 74. Tyukavina O.N., Klevtsov D.N., Drozdov I.I., Melekhov V.I. Wood Density of Scots Pine in Different Growth Conditions. Lesnoy Zhurnal [Russian Forestry Journal, 2017, no. 6, pp. 56–64]. DOI: 10.17238/issn0536-1036.2017.6.56, URL: http://lesnoizhurnal.ru/upload/iblock/dc6/Tyukavina.pdf 75. Unzhakov A.R., Antonova E.P., Sergina S.N., Baishnikova I.V., Chernobrovkina N.P., Robonen E.V. The Influence of Enriched L-Arginine Pine Extract on Biochemical Blood Parameters in Puppies-Hypotrophics Minks. Krolikovodstvo i Zverovodstvo [Rabbit and Animal Breeding], 2017, no. 3, pp. 104–105. 76. Usol’tsev V.A., Chasovskikh V.P., Tsepordey I.S. Phytomass Vertical Structure of Scots Pine Trees: Studying System Connections by Means of Information Technology: Monograph. Yekaterinburg, USFEU Publ., 2018. 436 p. 77. Hurshkainen T.V., Skripova N.N., Kutchin A.V. Comparative Assessment of Extraction Equipment for Efficient Isolation of Extractives of Coniferous Woody Greenery. Teoreticheskaya i prikladnaya ekologiya [Theoretical and Applied Ecology], 2017, no. 1, pp. 25–30. DOI: 10.25750/1995-4301-2017-1-025-030 78. Chernobrovkina N.P., Robonen E.V. Nitrogen, Boron and Amino Acid Levels in the Needles of Scots Pine Seedlings with Controlled Nitrogen and Boron Supply. Trudy KarNTs RAN [Transactions of KarRC RAS], 2015, no. 12, pp. 35–44. DOI: 10.17076/eb217 79. Chernobrovkina N.P., Dorofeeva O.S., Robonen E.V. Amino Acid Composition in Needles of Scots Pine Seedlings in Relation to Boron Availability. Vestnik Moskovskogo gosudarstvennogo universiteta lesa – Lesnoy vestnik [Forestry Bulletin], 2009, no. 3, pp. 56–61]. 80. Chernobrovkina N.P., Robonen E.V., Zaitseva M.I. Accumulation of L-Arginine in Scots Pine Needles while Regulation of Nitrogen and Boron Supply. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2010, no. 3, pp. 71–75. 81. Chernobrovkina N.P., Robonen E.V., Morozov A.K., Makarova T.N. Accumulation of L-Arginine in Needles of Norway Spruce with Regulated Nitrogen and Boron Availability. Trudy KarNTs RAN [Transactions of KarRC RAS], 2013, no. 3, pp. 159–165. 82. Chernobrovkina N.P., Robonen E.V., Unzhakov A.R., Tyutyunnik N.N. Arginine in the Life of Coniferous Plants. Sibirskiy Ekologicheskiy Zhurnal [Contemporary Problems of Ecology], 2016, no. 5, pp. 729–738. DOI: 10.15372/SEJ20160510 83. Chernobrovkina N.P., Robonen E.V., Igotti S.A., Dorofeeva O.S., Shengelia I.D. The Effect of Supply of Soils with Boron on the Growth of Pinus sylvestris Seedlings. Lesovedenie [Russian Journal of Forest Science], 2007, no. 5, pp. 69–76. 84. Yagodin V.I. Fundamentals of Chemistry and Technology of Woody Greens Processing. Leningrad, LGU Publ., 1981. 224 p. 85. Aussenac G. Interactions between Forest Stands and Microclimate: Ecophysiological Aspects and Consequences for Silviculture. Annals of Forest Science, 2000, vol. 57, no. 3, pp. 287–301. DOI: 10.1051/forest:2000119 86. Axel R. Wirtschaftlichkeit der Wertastung. Allgemeine Forstzeitschrift fur Waldwirtschaft und Umwelt Sorge, 1989, Bd. 44–45, S. 1188–1190. 87. Bergh J., Nilsson U., Allen H.L., Johansson U., Fahlvik N. Long-Term Responses of Scots Pine and Norway Spruce Stands in Sweden to Repeated Fertilization and Thinning. Forest Ecology and Management, 2014, vol. 320, pp. 118–128. DOI: 10.1016/j.foreco.2014.02.016 88. Binkley D., Högberg P. Tamm Review: Revisiting the Influence of Nitrogen Deposition on Swedish Forests. Forest Ecology and Management, 2016, vol. 368, pp. 222–239. DOI: 10.1016/j.foreco.2016.02.035 89. Bledzki A.K., Gassan J. Composites Reinforced with Cellulose Based Fibres. Progress in Polymer Science, 1999, vol. 24, iss. 2, pp. 221–274. DOI: 10.1016/S0079-6700(98)00018-5 90. Brockley R.P. Effects of Nitrogen and Boron Fertilization on Foliar Boron Nutrition and Growth in Two Different Lodgepole Pine Ecosystems. Canadian Journal of Forest Research, 2003, vol. 33, no. 6, pp. 988–996. DOI: 10.1139/x03-032 91. Crecente-Campo F., Pommerening A., Rodríguez-Soalleiro R. Impacts of Thinning on Structure, Growth and Risk of Crown Fire in a Pinus sylvestris L. Plantation in Northern Spain. Forest Ecology and Management, 2009, vol. 257, iss. 9, pp. 1945–1954. DOI: 10.1016/j.foreco.2009.02.009 92. De Vries W. Effects on Trees: Stem Growth. The Condition of Forests in Europe: 2013 Executive Report. Thünen, ICP Forests, 2013, pp. 30–32. 93. Del Río M., Bravo-Oviedo A., Pretzsch H., Löf M., Ruiz-Peinado R. A Review of Thinning Effects on Scots Pine Stands: From Growth and Yield to New Challenges under Global Change. Forest Systems, 2017, vol. 26, no. 2, art. eR03S. DOI: 10.5424/fs/2017262-11325 94. Del Río M., Calama R., Cañellas I., Roig S., Montero G. Thinning Intensity and Growth Response in SW-European Scots Pine Stands. Annals of Forest Science, 2008, vol. 65, iss. 3, art. 308. DOI: 10.1051/forest:2008009 95. Durzan D.J. Arginine, Scurvy and Cartier’s “Tree of Life”. Journal of Ethnobiology and Ethnomedicine, 2009, no. 5, art. 5. DOI: 10.1186/1746-4269-5-5 96. Durzan D.J. Arginine and the Shade Tolerance of White Spruce Saplings. Entering Winter Dormancy. Journal of Forest Science, 2010, vol. 56, no. 2, pp. 77–83. DOI: 10.17221/57/2009-JFS 97. Durzan D.J. Interpolated Apomictic Somatic Embryogenesis, Androsporogenesis, Asexual Heterospory, Mitosporogenesis and Genomic Silencing in a Gymnosperm Artificial Sporangium. Proceedings of the IUFRO Working Party 2.09.02 Conference on “Integrating Vegetative Propagation, Biotechnologies and Genetic Improvement for Tree Production and Sustainable Forest Management”, Brno, Czech Republic, June 25–28, 2012. Brno, IUFRO, 2012, pp. 3–36. 98. Ellsworth D.S., Crous K.Y., Lambers H., Cooke J. Phosphorus Recycling in Photorespiration Maintains High Photosynthetic Capacity in Woody Species. Plant, Cell & Environment, 2015, vol. 38, iss. 6, pp. 1142–1156. DOI: 10.1111/pce.12468 99. Eriksson H., Karlsson K. Effects of Different Thinning and Fertilization Regimes on the Development of Scots Pine (Pinus sylvestris (L.)) and Norway Spruce (Picea abies (L.) Karst.) Stands in Long-Term Silvicultural Trials in Sweden. Technical Report no. SLU-SKOPRO-R-42. Uppsala, SLU, 1997, vol. 42. 135 p. [In Swedish]. 100. From F. Long-Term Effects of Nitrogen (N) Fertilizer and Simulated N Deposition on Boreal Forest Growth. Licentiate Thesis. Umeå, SLU, 2014. 49 p. 101. From F., Strengbom J., Nordin A. Residual Long-Term Effects of Forest Fertilization on Tree Growth and Nitrogen Turnover in Boreal Forest. Forests, 2015, vol. 6, iss. 4, pp. 1145–1156. DOI: 10.3390/f6041145 102. Gerasimov Y., Karjalainen T. Energy Wood Resources in Northwest Russia. Biomass and Bioenergy, 2011, vol. 35, iss. 5, pp. 1655–1662. DOI: 10.1016/j.biombioe.2010.12.039 103. Gezelius K., Näsholm T. Free Amino Acids and Protein in Scots Pine Seedlings Cultivated at Different Nutrient Availabilities. Tree Physiology, 1993, vol. 13, iss. 1, pp. 71–86. DOI: 10.1093/treephys/13.1.71 104. Ghosh M.K., Ghosh U.K. Utilization of Pine Needles as Bed Material in Solid State Fermentation for Production of Lactic Acid by Lactobacillus Strains. BioResources, 2011, vol. 6, iss. 2, pp. 1556–1575. 105. Gupta M., Chauhan M., Khatoon N., Singh B. Studies on Biocomposites Based on Pine Needles and Isocyanate Adhesives. Journal of Biobased Materials and Bioenergy, 2010, vol. 10, no. 4, pp. 352–362. DOI: 10.1166/jbmb.2010.1100 106. Haveraaen O., Frivold L.H. Effect of Repeated Fertilization on Stem Growth in Old Stands of Pinus sylvestris in South East Norway. Journal of Forest Science, 2015, vol. 61, no. 2, pp. 72–79. DOI: 10.17221/110/2014-JFS 107. Hopmans P., Flinn D.W. Boron Deficiency in Pinus radiata D. Don and the of Applied Boron on Height Growth and Nutrient Uptake. Plant and Soil, 1984, vol. 79, iss. 2, pp. 295–298. DOI: 10.1007/BF02182353 108. Högberg P., Fan H., Quist M., Binkley D., Tamm C.O. Tree Growth and Acidification in Response to 30 Years of Experimental Nitrogen Loading on Boreal Forest. Global Change Biology, 2006, vol. 12, iss. 3, pp. 489–499. DOI: 10.1111/j.1365-2486.2006.01102.x 109. Huhn G., Schulz H. Contents of Free Amino Acids in Scots Pine Needles from Field Sites with Different Levels of Nitrogen Deposition. New Phytologist, 1996, vol. 134, iss.1, pp. 95–101. DOI: 10.1111/j.1469-8137.1996.tb01149.x 110. Hyvönen R., Persson T., Andersson S., Olsson B., Ågren G.I., Linder S. Impact of Long-Term Nitrogen Addition on Carbon Stocks in Trees and Soils in Northern Europe. Biogeochemistry, 2008, vol. 89, pp. 121–137. DOI: 10.1007/s10533-007-9121-3 111. Ikonen V.-P., Peltola H., Wilhelmsson L., Kilpeläinen A., Väisänen H., Nuutinen T., Kellomäki S. Modelling the Distribution of Wood Properties along the Stems of Scots Pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) as Affected by Silvicultural Management. Forest Ecology and Management, 2008, vol. 256, no. 6, pp. 1356–1371. DOI: 10.1016/j.foreco.2008.06.039 112. Iwalokun B.A., Hodonu S.A., Nwoke S., Ojo O., Agomo P.U. Evaluation of the Possible Mechanisms of Antihypertensive Activity of Loran Thus Micranthus: An African Mistletoe. Biochemistry Research International, 2011, vol. 2011, art. 159439. DOI: 10.1155/2011/159439 113. Jacobson S., Pettersson F. Growth Responses Following Nitrogen and NPKMg Additions to Previously N-Fertilized Scots Pine and Norway Spruce Stands on Mineral Soils in Sweden. Canadian Journal of Forest Research, 2001, vol. 31(5), pp. 899–909. DOI: 10.1139/x01-020 114. Jacobson S., Pettersson F. An Assessment of Different Fertilization Regimes in Three Boreal Coniferous Stands. Silva Fennica, 2010, vol. 44, no. 5, pp. 815–827. DOI: 10.14214/sf.123 115. Jagodziński A.M., Kałucka I., Horodecki P., Oleksyn J. Aboveground Biomass Allocation and Accumulation in a Chronosequence of Young Pinus sylvestris Stands Growing on a Lignite Mine Spoil Heap. Dendrobiology, 2014, vol. 72, pp. 139–150. DOI: 10.12657/denbio.072.012 116. Jelonek T., Pazdrowski W., Walkowiak R., Arasimowicz-Jelonek M., Tomczak A. Allometric Models of Foliage Biomass in Scots Pine (Pinus sylvestris L.). Polish Journal of Environmental Studies, 2011, vol. 20, no. 2, pp. 355–364. 117. King J.E., Gifford D.J. Amino Acid Utilization in Seeds of Loblolly Pine during Germination and Early Seedling Growth (I. Arginine and Arginase Activity). Plant Physiology, 1997, vol. 113, pp. 1125–1135. DOI: 10.1104/pp.113.4.1125 118. Kukkola M., Saramäki J. Growth Response in Repeatedly Fertilized Pine and Spruce Stands on Mineral Soils. Communicationes Instituti Forestalis Fenniae, 1983, vol. 114. 55 p. 119. Kumar R., Zhang L. Aligned Ramie Fiber Reinforced Arylated Soy Protein Composites with Improved Properties. Composites Science and Technology, 2009, vol. 69, iss. 5, pp. 555–560. DOI: 10.1016/j.compscitech.2008.10.027 120. Lal P.S., Sharma A., Bist V. Pine Needle – An Evaluation of Pulp and Paper Making Potential. Journal of Forest Products and Industries, 2013, vol. 2, iss. 3, pp. 42–47. 121. Larson P.R., Kretschmann D.E., Clark III A., Isebrands J.G. Formation and Properties of Juvenile Wood in Southern Pines: A Synopsis. General Technical Report FPL-GTR-129. Madison, WI, USDA, 2001. 42 p. 122. Lehtonen A. Estimating Foliage Biomass in Scots Pine (Pinus sylvestris) andNorway Spruce (Picea abies) Plots. Tree Physiology, 2005, vol. 25, iss. 7, pp. 803–811.DOI: 10.1093/treephys/25.7.803 123. Lindström H. Basic Density in Norway Spruce. Part I. A Literature Review.Wood and Fiber Science, 1996, vol. 28(1), pp. 15–27. 124. Magill A.H., Aber J.D., Currie W.S., Nadelhoffer K.J., Martin M.E., McDowell W.H.,Melillo J.M., Steudler P. Ecosystem Response to 15 Years of Chronic Nitrogen Additions atthe Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 2004,vol. 196, iss. 1, pp. 7–28. DOI: 10.1016/j.foreco.2004.03.033 125. Mäkelä A., Vanninen P. Impacts of Size and Competition on Tree Form andDistribution of Aboveground Biomass in Scots Pine. Canadian Journal of Forest Research,1998, vol. 28, no. 2, pp. 216–227. DOI: 10.1139/x97-199 126. Mäkinen H., Hynynen J. Wood Density and Tracheid Properties of Scots Pine:Responses to Repeated Fertilization and Timing of the First Commercial Thinning. Forestry,2014, vol. 87, iss. 3, pp. 437–447. DOI: 10.1093/forestry/cpu004 127. Mäkinen H., Saranpää P., Linder S. Wood-Density Variation of Norway Sprucein Relation to Nutrient Optimization and Fibre Dimensions. Canadian Journal of ForestResearch, 2002, vol. 32, no. 2, pp. 185–194. DOI: 10.1139/x01-186 128. Mälkönen E., Kukkola M. Effects of Long-Term Fertilization on the BiomassProduction and Nutrient Status of Scots Pine Stands. Fertilizer Research, 1991, vol. 27,pp. 113–127. DOI: 10.1007/BF01048614 129. Mead D.J., Gadgil R.L. Fertilizer Use in Established Radiata Pine Stands inNew Zealand. New Zealand Journal of Forestry Science, 1978, vol. 8, no. 1, pp. 105–134. 130. Mörling T. Evaluation of Annual Ring Width and Ring Density DevelopmentFollowing Fertilization and Thinning of Scots Pine. Annals of Forest Science, 2002, vol. 59,no. 1, pp. 29–40. DOI: 10.1051/forest:2001003 131. Mörling T., Valinger E. Effects of Fertilization and Thinning on HeartwoodArea, Sapwood Area and Growth in Scots Pine. Scandinavian Journal of Forest Research,1999, vol. 14, iss. 5, pp. 462–469. DOI: 10.1080/02827589950154168 132. Müssig J. Cotton Fibre-Reinforced Thermosets Versus Ramie Composites:A Comparative Study Using Petrochemical- and Agro-Based Resins. Journal of Polymersand the Environment, 2008, vol. 16, pp. 94–102. DOI: 10.1007/s10924-008-0089-4 133. Näsholm T., Ericsson A. Seasonal Changes in Amino Acids, Protein and TotalNitrogen in Needles of Fertilized Scots Pine Trees. Tree Physiology, 1990, vol. 6, iss. 3,pp. 267–281. DOI: 10.1093/treephys/6.3.267 134. Niemistö P., Kilpeläinen H., Poutiainen E. Effect of First Thinning Type andAge on Growth, Stem Quality and Financial Performance of a Scots Pine Stand in Finland.Silva Fennica, 2018, vol. 52, no. 2, art. 7816. DOI: 10.14214/sf.7816 135. Nilsen P., Abrahamsen G. Scots Pine and Norway Spruce Stands Responses toAnnual N, P and Mg Fertilization. Forest Ecology and Management, 2003, vol. 174,iss. 1-3, pp. 221–232. DOI: 10.1016/S0378-1127(02)00024-5 136. Nordin A., Uggla C., Näsholm T. Nitrogen Forms in Bark, Wood and Foliage ofNitrogen-Fertilized Pinus sylvestris. Tree Physiology, 2001, vol. 21, iss. 1, pp. 59–64.DOI: 10.1093/treephys/21.1.59 137. Novak J., Slodicak M., Dusek D. Thinning Effects on Forest Productivity andSite Characteristics in Stands of Pinus sylvestris in the Czech Republic. Forest Systems,2011, vol. 20, no. 3, pp. 464–474. DOI: 10.5424/fs/20112003-11074 138. Oleksyn J., Reich P.B., Zytkowiak R., Karolewski P., Tjoelker M.G. NeedleNutrients in Geographically Diverse Pinus sylvestris L. Populations. Annals of Forest Science, 2002, vol. 59, no. 1, pp. 1–18. DOI: 10.1051/forest:2001001 139. Peltola H., Kilpeläinen A., Sauvala K., Räisänen T., Ikonen, V.-P. Effects ofEarly Thinning Regime and Tree Status on the Radial Growth and Wood Density of ScotsPine. Silva Fennica, 2007, vol. 41, no. 3, pp. 489–505. DOI: 10.14214/sf.285 140. Pettersson F., Högbom L. Long-Term Growth Effects Following Forest Nitrogen Fertilization in Pinus sylvestris and Picea abies Stands in Sweden. Scandinavian Journal of Forest Research, 2004, vol. 19, iss. 4, pp. 339–347. DOI: 10.1080/02827580410030136 141. Pietrzykowski M., Socha J. An Estimation of Scots Pine (Pinus sylvestris L.) Ecosystem Productivity on Reclaimed Post-Mining Sites in Poland (Central Europe) Using of Allometric Equations. Ecological Engineering, 2011, vol. 37, iss. 2, pp. 381–386. DOI: 10.1016/j.ecoleng.2010.10.006 142. Poorter H., Niklas K.J., Reich P.B., Oleksyn J., Poot P., Mommer L. Biomass Allocation to Leaves, Stems and Roots: Meta-Analyses of Interspecific Variation and Environmental Control. New Phytologist, 2012, vol. 193, pp. 30–50. DOI: 10.1111/j.1469-8137.2011.03952.x 143. Primicia I., Artázcoz R., Imbert J.-B., Puertas F., Traver M.C., Castillo F.-J. Influence of Thinning Intensity and Canopy Type on Scots Pine Stand and Growth Dynamic in a Mixed Managed Forest. Forest Systems, 2016, vol. 25, no. 2, art. e057. DOI: 10.5424/fs/2016252-07317 144. Pukkala T. Optimal Nitrogen Fertilization of Boreal Conifer Forest. Forest Ecosystems, 2017, vol. 4, art. 3. DOI: 10.1186/S40663-017-0090-2 145. Repola J., Ahnlund Ulvcrona K. Modelling Biomass of Young and Dense Scots ine (Pinus sylvestris L.) Dominated Mixed Forests in Northern Sweden. Silva Fennica, 2014, vol. 48, no. 5, art. 1190. DOI: 10.14214/sf.1190 146. Routa J., Kellomäki S., Peltola H., Asikainen A. Impacts of Thinning and Fertilization on Timber and Energy Wood Production in Norway Spruce and Scots Pine: Scenario Analyses Based on Ecosystem Model Simulations. Forestry, 2011, vol. 84, iss. 2, pp. 159–175. DOI: 10.1093/forestry/cpr003 147. Sauter U.H., Mutz R., Munro B.D. Determining Juvenile-Mature Wood Transition in Scots Pine Using Latewood Density. Wood Fiber and Science, 1999, vol. 31, pp. 416–425. 148. Sikström U. Effects of Low-Dose Liming and Nitrogen Fertilization on Stemwood Growth and Needle Properties of Picea abies and Pinus sylvestris. Forest Ecology and Management, 1997, vol. 95, iss. 3, pp. 261–274. DOI: 10.1016/S0378-1127(97)00025-X 149. Singha A.S., Jyoti A. Mechanical, Morphological, and Thermal Properties of Chemically Treated Pine Needles Reinforced Thermosetting Composites. Journal of Applied Polymer Science, 2013, vol. 127, iss. 1, pp. 387–393. DOI: 10.1002/app.37636 150. Sinha P., Mathur S., Sharma P., Kumar V. Potential of Pine Needles for PLA-Based Composites. Polymer Composites, 2018, vol. 39, iss. 4, pp. 1339–1349. DOI: 10.1002/pc.24074 151. Sjølie H.K., Sørlie H.A.K., Tveite B., Solberg B. The Performance of Two Swedish N Fertilization Functions Evaluated on Data from Norwegian Fertilization Experiments. Silva Fennica, 2015, vol. 49, no. 4, art. 1330. DOI: 10.14214/sf.1330 152. Tamm C.O. Nitrogen in Terrestrial Ecosystems. Berlin-Heidelberg, Springer-Verlag, 1991. 116 p. DOI: 10.1007/978-3-642-75168-4 153. Tarvainen L., Lutz M., Räntfors M., Näsholm T., Wallin G. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees. Frontiers in Plant Science, 2016, vol. 7, art. 1061. DOI: 10.3389/fpls.2016.01051 154. Ulvcrona T., Ulvcrona K.A. The Effects of Pre-Commercial Thinning and Fertilization on Characteristics of Juvenile Clearwood of Scots Pine (Pinus sylvestris L.). Forestry, 2011, vol. 84, iss. 3, pp. 207–219. DOI: 10.1093/forestry/cpr007 155. Valinger E. Effects of Thinning and Nitrogen Fertilization on Stem Growth and Stem Form of Pinus sylvestris Trees. Scandinavian Journal of Forest Research, 1992, vol. 7, iss. 1-4, pp. 219–228. 156. Valinger E., Elfving B., Mörling T. Twelve-Year Growth Response of Scots Pine to Thinning and Nitrogen Fertilization. Forest Ecology and Management, 2000, vol. 134, iss. 1-3, pp. 45–53. DOI: 10.1016/S0378-1127(99)00244-3 157. Valinger E., Sjögren H., Nord G. Cedergren J. Effects on Stem Growth of Scots Pine 33 Years after Thinning and/or Fertilization in Northern Sweden. Scandinavian Journal of Forest Research, 2019, vol. 34, iss. 1, pp. 33–38. DOI: 10.1080/02827581.2018.1545920 158. Vanninen P. Allocation of Above-Ground Growth in Pinus sylvestris – Impacts of Tree Size and Competition. Silva Fennica, 2004, vol. 38, no. 2, pp. 155–166. DOI: 10.14214/sf.425 159. Varmola M., Salminen H., Timonen M. Thinning Response and Growth Trends of Seeded Scots Pine Stands at the Arctic Timberline. Silva Fennica, 2004, vol. 38, no. 1, pp. 71–83. DOI: 10.14214/sf.436 160. Vose J.M., Dougherty P.M., Long J.N., Smith F.W., Gholz H.L., Curran P.J. Factors Influencing the Amount and Distribution of Leaf Area of Pine Stands. Ecological Bulletins, 1994, no. 43, pp. 102–114. DOI: 10.2307/20113135 161. Warren C.R., Adams M.A. Phosphorus Affects Growth and Partitioning of Nitrogen to Rubisco in Pinus pinaster. Tree Physiology, 2002, vol. 22, iss. 1, pp. 11–19. DOI: 10.1093/treephys/22.1.11 162. Wikner B. Distribution and Mobility of Boron in Forest Ecosystems. Communicationes Instituti Forestalis Fenniae, 1983, no. 116, pp. 131–141. 163. Winter G., Todd C.D., Trovato M., Forlani G., Funck D. Physiological Implications of Arginine Metabolism in Plants. Frontiers in Plant Science, 2015, vol. 6, art. 534. DOI: 10.3389/fpls.2015.00534 164. Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. Biomass and Stem Volume Equations for Tree Species in Europe. Silva Fennica Monographs 4, 2005, vol. 4. 63 p. Received on December 30, 2019 Obtaining Woody Greens Enriched with L-Arginine during Forestry Management of Young Scots Pine Stands (Scientific Review) |
Make a Submission
Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025" INDEXED IN:
|
|
|
|
|
|
|
|
|
|
|
|
|