Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425
Phone: +7 (8182) 21-61-18 Lesnoy Zhurnal |
D.A. Prokhorov, A.S. Smolin Complete text of the article:Download article (pdf, 0.6MB )UDС676.056.5 + 676.252DOI:10.37482/0536-1036-2020-2-159-168AbstractThe paper presents the method for assessment the performance of high-speed Yankee hoods in the production of tissue paper grades and the results of its use in working machine. The following parameters are found applying this method: paper web dryness, air pressure in the wet and dry ends of high-speed convective dryers and temperature of the air spilled out of the hoods. The methodology is based on the measurement of these characteristics during the operation of working equipment with further adjustment of the separate system units. Thermal imaging was carried out during the experiment. It has been found that blowing hot air on the front side of the hood and sucking in the cold air on the drive side leads to uneven moisture profile (measured on the paper machine roll) across the paper web width, a decrease in energy efficiency and the machine capacity. Performance indicator may be, for instance, the spilled air temperature, which on the studied machine is significantly different from the standard value and is 175 °C. The rationality of regular monitoring of air characteristics when changing processing modes is proved. The relevance of the cascade system is substantiated, where not only a direct cascade from the dry end to the wet end is possible, but also there is an opportunity to adjust the humidity of exhaust air by addition/reduction of part of it to/from the dry end. The direct effect of adjusting the humidity of exhaust air in the drying section on reduction of energy costs, as well as the effect of makeup air on the amount of infiltration and the air balance of the system are confirmed. A set of measures implemented within the framework of this methodology makes it possible to achieve energy saving in existing industries. The prospective saving potential of gas is 62 m3/h or 17 % of the current consumption and actual electricity consumption is 6.8 kWh or 4 % for the studied machine.AuthorsD.A. Prokhorov, Postgraduate Student; ORCID: https://orcid.org/0000-0001-5206-4119A.S. Smolin, Doctor of Engineering, Prof. AffiliationSaint-Petersburg State University of Industrial Technologies and Design, ul. Ivana Chernykh, 4, Saint Petersburg, 198095, Russian Federation; e-mail: daniel.prokhorov@gmail.com, gturp.tbik@mail.ruKeywordspaper machine, tissue paper grades, tissue, drying section, Yankee hood, energy consumption, cross-direction moisture profile, machine productivityFor citationProkhorov D.A., Smolin A.S. Performance Assessment of the Drying Section of Machines for the Production of Tissue Paper Grades. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 2, pp. 159–168. DOI: 10.37482/0536-1036-2020-2-159-168References1. Belʼskiy A.P., Lotvinov M.D. Ventilation of Paper Machines. Moscow, Lesnaya promyshlennostʼ Publ., 1990. 216 p.2. Boykov L.M. Improving the Processes of Contact-Convective Drying of Cardboard and Paper: Dr. Eng. Sci. Diss. Saint Petersburg, 2001. 422 p. 3. Boykov L.M. Improving the Drying Efficiency of Paper and Board Machines, and Corrugators. Saint Petersburg, SPbSTUPP Publ., 2015. 534 p. 4. Boykov L.М., Prokhorov D.A., Ionin E.N. Upgrade of Ventilation Systems at the Pulp and Paper Mills. Tsellyulosa. Bumaga, Karton [Pulp. Paper. Board], 2015, no. 10, pp. 60–64. 5. Lakomkin V.Yu., Belʼskiy A.P. Heat and Mass Exchangers of Mills (Drying Systems). Saint Petersburg, SPbSTUPP Publ., 2006. 100 p. 6. Prokhorov D.A. Program for Calculating the Drying Kinetics of the Roofing Paperboard in Warmup Phase. Certificate RF, no. 2016615260, 2016. 7. Prokhorov D.A., Ionin E.N., Antonenko T.A., Belousov V.N. Program for Calculating Recuperative Airheaters. Certificate RF, no. 2017615668, 2017. 8. Smolin A.S., Pyatkova I.A. Promissing Directions for Tissue Production Development. Technology and Equipment in the Production of Tissue Materials. Saint Petersburg, MNPK Publ., 2010, pp. 20–22. 9. Berardi R., Scherb T. Tissue Goes High-Speed. Twogether, 2012, no. 33, pp. 30–31. 10. Blechschmidt J. Taschenbuch der Papiertechnik. München, Carl Hanser Verlag, 2013. 650 S. 11. Boykov L.M., Prokhorov D.A., Ionin E.N., Lukianov S.A. Modernization of Steam and Condensate Systems of Drying Plants of Paper and Cardboard-Making Machines. Materials of the 102nd International Scientific-Practical Conference “The Technical Progress of Humanity in the Context of the Continued Expansion of the Material Needs of Society”. London, 2015, pp. 77–84. 12. Engelking P.D. Thermodynamik. Friedrichshafen, Germany, 2016. 134 p. 13. Fisher Tissue Databank 2018. Fisher International, 2019. 78 p. 14. Fleschhut E. Development of a Technical Design Tool for Tissue Machines. Bachelor Thesis. Ravensburg, 2018. 72 p. 15. Greenleaf C. Where Will the Tissue Market Be in 2025? Fisher International, Inc., 2017. Available at: https://www.fisheri.com/images/features/insights/Fisher_Analysis_ Tissue_by_2025.pdf (accessed 15.07.19). 16. Kilby E. CEPI Annual Statistics 2016. 2017. 95 p. 17. Miller T., Kramer C., Fisher A. Brandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing. U.S. Department of Energy, 2015. 94 p. 18. Perryʼs Chemical Engineerʼs Handbook. Ed. by D.W. Green, R.H. Perry. New York, McGraw-Hill, 2008. 2700 p. 19. Poling B.E., Prausnitz J.M., OʼConnell J.P. The Estimation of Physical Properties. Ch. 1. Properties of Gases and Liquids. New York, McGraw-Hill, 2001. 721 p. 20. Sarli A. Energy Optimization Package for Yankee Hoods. Ravensburg, Voith Paper Air Systems, 2012. 4 p. 21. Transport Phenomena and Drying of Solids and Particulate Materials. Ed. by J.M.P.Q. Delegao, A.G. Barbosa de Lima. Basel, Switzerland, Springer, 2014. 204 p. DOI: 10.1007/978-3-319-04054-7 22. Vogt M., Blum O., Hutter A., Jung H., Meyer B. Branchenleitfaden für die Papierindustrie. Duisburg, Arbeitsgemeinschaft Branchenenergiekonzept Papier, 2008. 180 p. Received on July 15, 2019 Performance Assessment of the Drying Section of Machines for the Production of Tissue Paper Grades |
Make a Submission
Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025" INDEXED IN:
|
|
|
|
|
|
|
|
|
|
|
|
|