Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425

Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

Calorific Value of the Degraded Stem Wood of Spruce Picea abies (L.). P. 179–188

Версия для печати

Olga N. Tyukavina, Sergey A. Vaskin, Dmitriy Yu. Korepin, Pavel A. Feklistov, Vladimir I. Melekhov, Sergey S. Makarov

Complete text of the article:

Download article (pdf, 0.5MB )

UDС

630.81:536.662

DOI:

10.37482/0536-1036-2025-6-179-188

Abstract

The popularity of bioenergy is increasing in the light of the development of the green economy and the desire to achieve carbon neutrality in production. In this regard, various types of energy raw materials, their properties and waste disposal possibilities are being considered. The purpose of the study has been to assess the calorific value of spruce wood damaged by wood-destroying fungi. An automated ABK-1B bomb calorimeter has been used to measure the calorific value of spruce stem wood. Separately, pellets have been pressed from wood, bark and knots and dried in a drying cabinet at a temperature of 105 °C. The pellets have been burned in a completely dry state. The ash weight has been determined as the difference between the weight of the crucible with residues after combustion of the sample in a calorimeter bomb and the weight of the empty crucible. The calorific value of healthy spruce wood is 20,180–20,232 J/g. In the cross section of the spruce stem, the calorific value varies in the range from 18,900 to 21,700 J/g. The lowest values are typical for the pre-edge zone of the degraded wood. Wood damaged by corrosive rot has a lower heat capacity compared to healthy wood by 1.5–6.2 % (18,926–19,868 J/g). The calorific value of wood damaged by destructive rot exceeds that of healthy wood by 1.5–10.5 % (20,487–22,301 J/g). As the stage of destructive rot of spruce wood increases, its calorific value grows. The calorific value of pellets from degraded spruce wood can be estimated by their appearance. The yellow and mottled colors of the pressed raw material indicate a significantly lower calorific value compared to pellets of brown and orange colors. The ash content of degraded wood of different types is at the same level. The ash content of wood damaged by stage 3 corrosive rot is significantly higher than that of healthy wood and wood at previous stages of decomposition by 96–129 %. The calorific value of the bark of spruce stems damaged by rot is at the level of the calorific value of healthy wood, and the ash content is 3 times higher. The calorific value of a knot is 7 % higher than that of healthy wood, while the ash content remains at the same level.

Authors

Olga N. Tyukavina1, Doctor of Agriculture, Assoc. Prof.; ResearcherID: H-2336-2019, ORCID: https://orcid.org/0000-0003-4024-6833
Sergey A. Vaskin2, Candidate of Agriculture, Leading Engineer, ResearcherID: AHB-7358-2022, ORCID: https://orcid.org/0000-0001-6160-5140
Dmitriy Yu. Korepin2, Engineer, ResearcherID: KYR-2226-2024, ORCID: https://orcid.org/0009-0003-0063-3879
Pavel A. Feklistov3, Doctor of Agriculture, Prof.; ResearcherID: AAC-2377-2020, ORCID: https://orcid.org/0000-0001-8226-893X
Vladimir I. Melekhov1, Doctor of Engineering, Prof.; ResearcherID: Q-1051-2019, ORCID: https://orcid.org/0000-0002-2583-3012
Sergey S. Makarov4, Doctor of Agriculture; ResearcherID: AAK-9829-2021, ORCID: https://orcid.org/0000-0003-0564-8888

Affiliation

1Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; o.tukavina@narfu.ru, v.melekhov@narfu.ru
2Federal Forestry Agency – the Federal Budgetary Institution “Russian Center of Forest Health”, ul. Nikitova, 13, Arkhangelsk, 163062, Russian Federation; serzh.vaskin.2015@mail.rukorepin.mitya@yandex.ru
3N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, prosp. Nikolskiy, 20, Arkhangelsk, 163020, Russian Federation; pfeklistov@yandex.ru
4Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, ul. Timiryazevskaya, 49, Moscow, 127550, Russian Federation; s.makarov@rgau-msha.ru

Keywords

calorific value, spruce, wood, stem, corrosive rot, destructive rot

For citation

Tyukavina O.N., Vaskin S.A., Korepin D.Yu., Melekhov V.I., Feklistov P.A., Makarov S.S. Calorific Value of the Degraded Stem Wood of Spruce Picea abies (L.). Lesnoy Zhurnal = Russian Forestry Journal, 2025, no. 6, pp. 179–188. (In Russ.). https://doi.org/10.37482/0536-1036-2025-6-179-188

References

  1. Report: Environmental Status and Protection in the Arkhangelsk Region in 2023. Ed. by E.V. Shashin. Arkhangelsk, 2024. 505 p. (In Russ.).

  2. Koptev S.V. Fautiness of North Taiga Spruce Forests. Lesnoy Zhurnal = Russian Forestry Journal, 1992, no. 2, pp. 20–26. (In Russ.).

  3. Kulak M.I., Fedorenchik A.S., Leonov E.A. Forecasting the Storage of Fuel Reserves in Forest Energy Terminals. Nauka i innovatsii = Science and Innovations, 2012, no. 7(113), pp. 69–72. (In Russ.).

  4. Lebedev A.V., Ivanova E.A. Spruce Pathology in the Stands of Different Composition. Lesnoy Zhurnal = Russian Forestry Journal, 2001, no. 3, pp. 47–50. (In Russ.).

  5. Leonov E.A., Klokov D.V., Garabazhiu A.A., Dukhovnik A.A. Influence of the Wood Raw Materials and Fuel Chips Storage Terms on Their Heating Ability. Trudy BGTU = Proceedings of BSTU, 2020, series 1, no. 2, pp. 186–191. (In Russ.).

  6. Ostroukhova L.A., Fedorova T.E., Onuchina N.A., Levchuk A.A., Babkin V.A. Determination of the Quantitative Content of Extractives from Wood, Roots and Bark of Coniferous Trees in Siberia: Larch (Larix sibirica L.), Pines (Pinus sylvestris L.), Fir (Abies sibirica L.), Spruce (Picea obovata L.) and Cedar (Pinus sibirica Du Tour.). Khimija Rastitel’nogo Syr’ja, 2018, no. 4, pp. 185–195. (In Russ.). https://doi.org/10.14258/jcprm.2018044245

  7. Ripachek V. Biology of Wood-Destroying Fungi. Moscow, Lesnaya promyshlennost’ Publ., 1967. 276 p. (In Russ.).

  8. Serkov B.B., Sivenkov A.B., Than’ B.D., Aseeva R.M. Heat Release during Wood Combustion. Lesnoy vestnik = Forestry Bulletin, 2003, no. 5, pp. 74–79. (In Russ.).

  9. Storozhenko V.G. The Condition and Scope of Damage by Wood-Attacking Fungi in North Taiga Pristine Spruce Forests. Trudy Karel’skogo nauchnogo tsentra Rossijskoj akademii nauk = Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, 2013, no. 6, pp. 153–158. (In Russ.).

  10. Storozhenko V.G., Zasadnaya V.A. Structure of Woody Debris of Virgin Spruce Forests of the Northern and Southern Taiga in the European Part of Russia. Sibirskij lesnoj zhurnal = Siberian Journal Forest Science, 2019, no. 2, pp. 64–73. (In Russ.). https://doi.org/10.15372/SJFS20190206

  11. Tyukavina O.N. Directions for the Use of Pine Burnt Wood. Modern Forest Science: Proceedings of the VI Melekhov Scientific Readings Dedicated to the 115th Anniversary of the Birth of the Outstanding Scientist-Forester, Academician Ivan Stepanovich Melekhov. Arkhangelsk, Northern (Arctic) Federal University Publ., 2020, pp. 62–69. (In Russ.).

  12. Tyukavina O.N., Klevtsov D.N., Melekhov V.I., Neverov N.A. Calorific Value of Aerial Phytomass Fractions of Scots Pine in North Taiga Forest Region. Lesnoy vestnik = Forestry Bulletin, 2024, vol. 28, no. 2, pp. 27–33. (In Russ.). https://doi.org/10.18698/2542-1468-2024-2-27-33

  13. Tyukavina O.N., Korepin D.Yu. Calorific Value of Spruce Trunks when They are Affected by a Spruce Sponge. Forests of Russia: Politics, Industry, Science, Education: Proceedings of the IX All-Russian Scientific and Technical Conference. St. Petersburg, St. Petersburg State Forestry University Publ., 2024, pp. 210–212. (In Russ.).

  14. Tyukavina O.N., Kunnikov F.A., Kosheleva A.E. The Influence of Rot on the Distribution of Mineral Elements in Balsam Poplar Wood. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii, 2016, no. 214, pp. 105–119. (In Russ.).

  15. Apraku S.E., Shen Y. Biomass Pellet Fuel Production and Utilization in Ghana: A Review. ACS Sustainable Resource Management, 2024, vol. 1, iss. 4, pp. 586–603. https://doi.org/10.1021/acssusresmgt.3c00121

  16. Gendek A., Aniszewska M., Owoc D., Tamelová B., Malaťák J., Velebil J., Krilek J. Physico-Mechanical and Energy Properties of Pellets Made from Ground Walnut Shells, Coniferous Tree Cones and Their Mixtures. Renewable Energy, 2023, vol. 122, pp. 248–258. https://doi.org/10.1016/j.renene.2023.04.122

  17. Gendek A., Piętka J., Aniszewska M., Malaťák J., Velebil J., Tamelová B., Krilek J., Moskalik T. Energy Value of Silver Fir (Abies alba) and Norway Spruce (Picea abies) Wood Depending on the Degree of its Decomposition by Selected Fungal Species. Renewable Energy, 2023, vol. 215, art. no. 118948. https://doi.org/10.1016/j.renene.2023.118948

  18. Gonçalves A.C., Malico I., Sousa A.M.O. Energy Production from Forest Biomass: An Overview. Forest Biomass – From Trees to Energy, IntechOpen, 2021, pp. 1–23. https://doi.org/10.5772/intechopen.93361

  19. Sui H., Chen J., Cheng W., Zhu Y., Zhang W., Hu J., Jiang H., Shao J., Chen H. Effect of Oxidative Torrefaction on Fuel and Pelletizing Properties of Agricultural Biomass in Comparison with Non-Oxidative Torrefaction. Renewable Energy, 2024, vol. 226, art. no. 120423. https://doi.org/10.1016/j.renene.2024.120423

  20. He H., Wang W., Sun Y., Sun W., Wu K. From Raw Material Powder to Solid Fuel Pellet: A State-of-the-Art Review of Biomass Densification. Biomass and Bioenergy, 2024, vol. 186, art. no. 107271. https://doi.org/10.1016/j.biombioe.2024.107271

  21. Krajnc N. Wood Fuels Handbook. Pristina, Food and Agriculture Organization of the United Nations, 2015. 31 p.

  22. Librenti I., Ceotto E., Di Candilo M. Biomass Characteristics and Energy Contents of Dedicated Lignocellulose Crops. Proceedings of the Third International Symposium on Energy from Biomass and Waste. Italy, Venice, 2010. 8 p.

  23. Nasser R.A., Aref I.M. Fuelwood Characteristics of Six Acacia Species Growing Wild in the Southwest of Saudi Arabia as Affected by Geographical Location. BioResources, 2014, vol. 9, iss. 1, pp. 1212–1224. https://doi.org/10.15376/biores.9.1.1212-1224

  24. Petráš R., Mecko J., Kukla J., Kuklová M., Krupová D., Pástor M., Raček M., Pivková I. Energy Stored in Above-Ground Biomass Fractions and Model Trees of the Main Coniferous Woody Plants. Sustainability, 2021, vol. 13, no. 22, art. no. 12686. https://doi.org/10.3390/su132212686

  25. Piętka J., Gendek A., Malaťák J., Velebil J., Moskalik T. Effects of Selected WhiteRot Fungi on the Calorific Value of Beech Wood (Fagus sylvatica L.). Biomass and Bioenergy, 2019, vol. 127, art. no. 105290. https://doi.org/10.1016/j.biombioe.2019.105290

  26. Zeng W.-s., Tang S.-z., Xiao Q.-h. Calorific Values and Ash Contents of Different Parts of Masson Pine Trees in Southern China. Journal of Forestry Research, 2014, vol. 25, pр. 779-786. https://doi.org/10.1007/s11676-014-0525-3


Calorific Value of the Degraded Stem Wood of Spruce Picea abies (L.). P. 179–188

 

Make a Submission


ADP_cert_2026.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2026"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png

  

Продолжая просмотр сайта, я соглашаюсь с использованием файлов cookie владельцем сайта в соответствии с Политикой в отношении файлов cookie, в том числе на передачу данных, указанных в Политике, третьим лицам (статистическим службам сети Интернет).