
Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425
Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/
|
The Use of Cationites in the Modification of Kraft Lignin with Nitrous Acid. P. 155–168
|
 |
Yuriy G. Khabarov, Evgeniy A. Skripnikov, Viacheslav A. Veshnyakov, Vadim A. Plakhin
UDС
676.084.2:66.095.82
DOI:
10.37482/0536-1036-2025-6-155-168
Abstract
Kraft lignin is the largest-tonnage technical lignin formed during kraft pulp cooking. According to statistics, approximately 70 mln t of such waste are generated annually. Most of it is disposed of in the system of chemicals recovery and thermal energy generation. Approximately 10…20 % of kraft lignin can be used to obtain a variety of products, for example, in the production of polymers, low-molecular compounds, activated carbon production, rubber industry, etc. For this purpose, kraft lignin is subjected to various types of modifications, including chemical ones: periodate oxidation, halogenation, sulfonation, sulfomethylation, nitration, nitrosation, etc. This article presents a new method for modification of kraft lignin with nitrous acid in a water-dioxane medium using solid-phase catalysis. The cation-exchange resins in H-form containing sulfogroups (cationite KU-2-8 and wofatite) have been used as catalysts. The optimal reagent consumption has been determined to be 50 % sodium nitrite and 230 % cationite from kraft lignin. It has been shown that the developed method and the well-known one using sulfuric acid as a catalyst give similar results. The molecular and electronic spectra of modified kraft lignin have been studied. In the electronic spectra of modified kraft lignin, a new absorption band appears characteristic of the nitroso group in the region of 400…500 nm with a maximum at 451 nm. By deconvolution, the electronic spectrum of modified kraft lignin is approximated by 6 Gaussians with an error of 2.5 %, while for the initial kraft lignin the spectrum can be described by 4 Gaussians with an error of 3.4 %. In contrast to the IR spectrum of kraft lignin, new absorption bands appear in the spectra of modified lignin at 615, 760, 1,330 and 1,550 cm–1, which are due to vibrations of NO bonds.
Keywordslignin, kraft lignin, modification, modified lignin, nitrous acid, nitrosation, solidphase catalysis, electron spectroscopy, infrared spectroscopy
For citation
Khabarov Yu.G., Skripnikov E.A., Veshnyakov V.A., Plakhin V.A. The Use of Cationites in the Modification of Kraft Lignin with Nitrous Acid. Lesnoy Zhurnal = Russian Forestry Journal, 2025, no. 6, pp. 155–168. (In Russ.). https://doi.org/10.37482/0536-1036-2025-6-155-168
References
-
Kozhevnikov A.Yu., Ul’yanovskaya S.L., Semushina M.P., Pokryshkin S.A., Ladesov A.V., Pikovskoi I.I., Kosyakov D.S. Modification of Sulfate Lignin with Sodium Periodate to Obtain Sorbent of 1,1-Dimethylhydrazine. Zhurnal prikladnoj khimii = Russian Journal of Applied Chemistry, 2017, vol. 90, pp. 516–521. https://doi.org/10.1134/S1070427217040048
-
Garkotin A.I., Khabarov I.G., Veshniakov V.A. Method for Modifying Kraft Lignin. Patent. RF, no. RU 2753533 C1, 2021. (In Russ.).
-
Protopopov A.V., Klevtsova M.V. Chemical Modification of Sulfate Lignin with Aromatic Amino Acids. Polzunovskiy vestnik, 2014, no. 3, pp. 42–44. (In Russ.).
-
Tarasevich B.N. IR Spectra of the Main Classes of Organic Compounds. Reference Materials. Moscow, 2012. 55 p. (In Russ.).
-
Khabarov Yu.G., Veshnyakov V.A., Plakhin V.A., Skripnikov E.A., Ovchinnikov D.V. Nitrosation of Lignosulfonates under Solid-Phase Catalysis Conditions. Lesnoy Zhurnal = Russian Forestry Journal, 2024, no. 3, pp. 175–187. (In Russ.). https://doi.org/10.37482/0536-1036-2024-3-175-187
-
Khabarov Yu.G., Kuzyakov N.Yu., Veshnyakov V.A., Komarova G.V., Garkotin A.Yu. Nitration of Sulfate Lignin under Homogeneous Conditions Studied by Electron Spectroscopy. Izvestiya Akademii nauk. Seriya: Khimicheskaya = Russian Chemical Bulletin, 2016, vol. 65, pp. 2925–2931. https://doi.org/10.1007/s11172-016-1679-2
-
Hai D.T.T., Gogotov A.F., Tai D.С. Nitrite-Nitrate Modification of Lignin as a Method to Obtain Pyrocondensate Thermopolymerization Inhibitors. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Proceedings of Irkutsk State Technical University, 2011, no. 4(51), pp. 100–104. (In Russ.).
-
Ahvazi B., Wojciechowicz O., Ton-That T.-M., Hawari J. Preparation of Lignopolyols from Wheat Straw Soda Lignin. Journal of Agricultural and Food Chemistry, 2011, vol. 59, iss. 19, pp. 10505–10516. https://doi.org/10.1021/jf202452m
-
Argyropoulos D.D.S., Crestini C., Dahlstrand C., Furusjö E., Gioia C., Jedvert K., Henriksson G., Hulteberg C., Lawoko M., Pierrou C., Samec J.S.M., Subbotina E., Wallmo H., Wimby M. Kraft Lignin: A Valuable, Sustainable Resource, Opportunities and Challenges. ChemSusChem, 2023, vol. 16, iss. 23, art. no. e202300492. https://doi.org/10.1002/cssc.202300492
-
Bai L., Greca L.G., Xiang W., Lehtonen J., Huan S., Nugroho R.W.N., Tardy B.L., Rojas O.J. Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir, 2019, vol. 35, iss. 3, pp. 571–588. https://doi.org/10.1021/acs.langmuir.8b01288
-
Bass G.F., Epps T.H. Recent Developments towards Performance-Enhancing Lignin-Based Polymers. Polymer Chemistry, 2021, vol. 12, no. 29, pp. 4130–4158. https://doi.org/10.1039/D1PY00694K
-
Blanco I., Cicala G., Latteri A., Saccullo G., El-Sabbagh A.M.M., Ziegmann G. Thermal Characterization of a Series of Lignin-Based Polypropylene Blends. Journal of Thermal Analysis and Calorimetry, 2017, vol. 127, pp. 147–153. https://doi.org/10.1007/s10973-016-5596-2
-
Dahlstrand C., Orebom A., Samec J., Sawadjoon S., Löfstedt J. Composition Comprising Derivatized Lignin for Fuel Production. Patent Application, no. WO 2016204682, 2016.
-
Di Francesco D., Rigo D., Reddy Baddigam K., Mathew A.P., Hedin N., Selva M., Samec J.S. A New Family of Renewable Thermosets: Kraft Lignin Poly-adipates. ChemSusChem, 2022, vol. 15, iss. 11, art. no. e202200326. https://doi.org/10.1002/cssc.202200326
-
Duval A., Lawoko M. A Review on Lignin-Based Polymeric, Micro- and Nano-Structured Materials. Reactive and Functional Polymers, 2014, vol. 85, pp. 78–96. https://doi.org/10.1016/j.reactfunctpolym.2014.09.017
-
Goldschmid O., Maranville L.F. Improved Spent Sulfite Liquor Determination by Nitrosolignin Method. Analytical Chemistry, 1959, vol. 31, iss. 3, pp. 370–374. https://doi.org/10.1021/ac60147a012
-
Graupner N. Application of Lignin as Natural Adhesion Promoter in Cotton Fibre-Reinforced Poly(Lactic Acid) (PLA) Composites. Journal of Materials Science, 2008, vol. 43, pp. 5222–5229. https://doi.org/10.1007/s10853-008-2762-3
-
Grigsby W.J., Scott S.M., Plowman-Holmes M.I., Middlewood P.G., Recabar K. Combination and Processing Keratin with Lignin as Biocomposite Materials for Additive Manufacturing Technology. Acta Biomaterialia, 2020, vol. 104, pp. 95–103. https://doi.org/10.1016/j.actbio.2019.12.026
-
Laurichesse S., Avérous L. Chemical Modification of Lignins: Towards Biobased Polymers. Progress in Polymer Science, 2014, vol. 39, iss. 7, pp. 1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004
-
Lewis H.F., Brauns F.E., Buchanan M.A., Brookbank E.B. Lignin Esters of Monoand Dibasic Aliphatic Acids. Industrial & Engineering Chemistry, 1943, vol. 35, iss. 10, pp. 1113–1117. https://doi.org/10.1021/ie50406a020
-
Li Y., Li J., Ren B., Cheng H. Conversion of Lignin to Nitrogenous Chemicals and Functional Materials. Materials, 2024, vol. 17, no. 20, art. no. 5110. https://doi.org/10.3390/ma17205110
-
Llevot A., Grau E., Carlotti S., Grelier S., Cramail H. From Lignin-Derived Aromatic Compounds to Novel Biobased Polymers. Macromolecular Rapid Communications, 2016, vol. 37, iss. 1, pp. 9–28. https://doi.org/10.1002/marc.201500474
-
Naqvi M., Yan J., Dahlquist E. Black Liquor Gasification Integrated in Pulp and Paper Mills: A Critical Review. Bioresource Technology, 2010, vol. 101, iss. 21, pp. 8001– 8015. https://doi.org/10.1016/j.biortech.2010.05.013
-
Orebom A., Verendel J.J., Samec J.S.M. High Yields of Bio Oils from Hydrothermal Processing of Thin Black Liquor without the Use of Catalysts or Capping Agents. ACS Omega, 2018, vol. 3, iss. 6, pp. 6757–6763. https://doi.org/10.1021/acsomega.8b00854
-
Patil S.V., Argyropoulos D.S. Stable Organic Radicals in Lignin: A Review. ChemSusChem, 2017, vol. 10, iss. 17, pp. 3284–3303. https://doi.org/10.1002/cssc.201700869
-
Qian Y., Zhong X., Li Y., Qiu X. Fabrication of Uniform Lignin Colloidal Spheres for Developing Natural Broad-Spectrum Sunscreens with High Sun Protection Factor. Industrial Crops and Products, 2017, vol. 101, pp. 54–60. https://doi.org/10.1016/j.indcrop.2017.03.001
-
Rochester J.R. Bisphenol A and Human Health: A Review of the Literature. Reproductive Toxicology, 2013, vol. 42, pp. 132–155. https://doi.org/10.1016/j.reprotox.2013.08.008
-
Sadeghifar H., Cui C., Argyropoulos D.S. Toward Thermoplastic Lignin Polymers. Part 1. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries. Industrial & Engineering Chemistry Research, 2012, vol. 51, iss. 51, pp. 16713–16720. https://doi.org/10.1021/ie301848j
-
Samec J., Löfstedt J., Dahlstrand C., Orebom A., Sawadjoon S. Composition Comprising Esters of Lignin and Oil or Fatty Acids. Patent US, no. US 10030147, 2016.
-
Sansaniwal S.K., Pal K., Rosen M.A., Tyagi S.K. Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review. Renewable and Sustainable Energy Reviews, 2017, vol. 72, pp. 363–384. https://doi.org/10.1016/j.rser.2017.01.038
-
Sen S., Patil S., Argyropoulos D.S. Thermal Properties of Lignin in Copolymers, Blends, and Composites: A Review. Green Chemistry, 2015, vol. 17, iss. 11, pp. 4862–4887. https://doi.org/10.1039/C5GC01066G
-
Tomani P., Axegård P., Berglin N., Lovell A., Nordgren D. Integration of Lignin Removal into a Kraft Pulp Mill and Use of Lignin as a Biofuel. Cellulose Chemistry and Technology, 2011, vol. 45, iss. 7–8, pp. 533–540.
-
Udeni Gunathilake T.M.S., Ching Y.C., Chuah C.H. Enhancement of Curcumin Bioavailability Using Nanocellulose Reinforced Chitosan Hydrogel. Polymers, 2017, vol. 9, no. 2, art. no. 64. https://doi.org/10.3390/polym9020064
-
Wallmo H., Theliander H., Jönsson A.-S., Wallberg O., Lindgren K. Chemical Pulping: The Influence of Hemicelluloses during the Precipitation of Lignin in Kraft Black Liquor. Nordic Pulp & Paper Research Journal, 2009, vol. 24, iss. 2, pp. 165–171. https://doi.org/10.3183/npprj-2009-24-02-p165-171
-
Wang H., Eberhardt T.L., Wang C., Gao S., Pan H. Demethylation of Alkali Lignin with Halogen Acids and its Application to Phenolic Resins. Polymers, 2019, vol. 11, no. 11, art. no. 1771. https://doi.org/10.3390/polym11111771
-
Williams D.L.H. Chapter 6 – Nitrosation. Nitrosation Reactions and the Chemistry of Nitric Oxide. Amsterdam, Elsevier Publ., 2004, pp. 105–115. https://doi.org/10.1016/B978-044451721-0/50007-4
-
Zinovyev G., Sumerskii I., Korntner P., Sulaeva I., Rosenau T., Potthast A. Molar Mass-Dependent Profiles of Functional Groups and Carbohydrates in Kraft Lignin. Journal of Wood Chemistry and Technology, 2017, vol. 37, iss. 3, pp. 171–183. https://doi.org/10.1080/02773813.2016.1253103
The Use of Cationites in the Modification of Kraft Lignin with Nitrous Acid. P. 155–168
|
Make a Submission
Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2026"
|