Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425

Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

The Use of Cationites in the Modification of Kraft Lignin with Nitrous Acid. P. 155–168

Версия для печати

Yuriy G. Khabarov, Evgeniy A. Skripnikov, Viacheslav A. Veshnyakov, Vadim A. Plakhin

Complete text of the article:

Download article (pdf, 1.2MB )

UDС

676.084.2:66.095.82

DOI:

10.37482/0536-1036-2025-6-155-168

Abstract

Kraft lignin is the largest-tonnage technical lignin formed during kraft pulp cooking. According to statistics, approximately 70 mln t of such waste are generated annually. Most of it is disposed of in the system of chemicals recovery and thermal energy generation. Approximately 10…20 % of kraft lignin can be used to obtain a variety of products, for example, in the production of polymers, low-molecular compounds, activated carbon production, rubber industry, etc. For this purpose, kraft lignin is subjected to various types of modifications, including chemical ones: periodate oxidation, halogenation, sulfonation, sulfomethylation, nitration, nitrosation, etc. This article presents a new method for modification of kraft lignin with nitrous acid in a water-dioxane medium using solid-phase catalysis. The cation-exchange resins in H-form containing sulfogroups (cationite KU-2-8 and wofatite) have been used as catalysts. The optimal reagent consumption has been determined to be 50 % sodium nitrite and 230 % cationite from kraft lignin. It has been shown that the developed method and the well-known one using sulfuric acid as a catalyst give similar results. The molecular and electronic spectra of modified kraft lignin have been studied. In the electronic spectra of modified kraft lignin, a new absorption band appears characteristic of the nitroso group in the region of 400…500 nm with a maximum at 451 nm. By deconvolution, the electronic spectrum of modified kraft lignin is approximated by 6 Gaussians with an error of 2.5 %, while for the initial kraft lignin the spectrum can be described by 4 Gaussians with an error of 3.4 %. In contrast to the IR spectrum of kraft lignin, new absorption bands appear in the spectra of modified lignin at 615, 760, 1,330 and 1,550 cm–1, which are due to vibrations of NO bonds.

Authors

Yuriy G. Khabarov, Doctor of Chemistry, Porf.;ResearcherID: P-1802-2015, ORCID: https://orcid.org/0000-0001-8392-0985
Evgeniy A. Skripnikov, Postgraduate Student; ResearcherID: AFB-6325-2022, ORCID: https://orcid.org/0009-0007-8028-4056
Viacheslav A. Veshnyakov, Candidate of Chemistry; ResearcherID: E-3882-2017, ORCID: https://orcid.org/0000-0002-8278-5053
Vadim A. Plakhin, Candidate of Chemistry;ResearcherID: AAH-6544-2020; ORCID: https://orcid.org/0000-0001-9143-1663

Affiliation

Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; khabarov.yu@mail.ru, frimen1004@mail.ruv.a.veshnyakov@narfu.ruv.plahin@narfu.ru

Keywords

lignin, kraft lignin, modification, modified lignin, nitrous acid, nitrosation, solidphase catalysis, electron spectroscopy, infrared spectroscopy

For citation

Khabarov Yu.G., Skripnikov E.A., Veshnyakov V.A., Plakhin V.A. The Use of Cationites in the Modification of Kraft Lignin with Nitrous Acid. Lesnoy Zhurnal = Russian Forestry Journal, 2025, no. 6, pp. 155–168. (In Russ.). https://doi.org/10.37482/0536-1036-2025-6-155-168

References

  1. Kozhevnikov A.Yu., Ul’yanovskaya S.L., Semushina M.P., Pokryshkin S.A., Ladesov A.V., Pikovskoi I.I., Kosyakov D.S. Modification of Sulfate Lignin with Sodium Periodate to Obtain Sorbent of 1,1-Dimethylhydrazine. Zhurnal prikladnoj khimii = Russian Journal of Applied Chemistry, 2017, vol. 90, pp. 516–521. https://doi.org/10.1134/S1070427217040048

  2. Garkotin A.I., Khabarov I.G., Veshniakov V.A. Method for Modifying Kraft Lignin. Patent. RF, no. RU 2753533 C1, 2021. (In Russ.).

  3. Protopopov A.V., Klevtsova M.V. Chemical Modification of Sulfate Lignin with Aromatic Amino Acids. Polzunovskiy vestnik, 2014, no. 3, pp. 42–44. (In Russ.).

  4. Tarasevich B.N. IR Spectra of the Main Classes of Organic Compounds. Reference Materials. Moscow, 2012. 55 p. (In Russ.).

  5. Khabarov Yu.G., Veshnyakov V.A., Plakhin V.A., Skripnikov E.A., Ovchinnikov D.V. Nitrosation of Lignosulfonates under Solid-Phase Catalysis Conditions. Lesnoy Zhurnal = Russian Forestry Journal, 2024, no. 3, pp. 175–187. (In Russ.). https://doi.org/10.37482/0536-1036-2024-3-175-187

  6. Khabarov Yu.G., Kuzyakov N.Yu., Veshnyakov V.A., Komarova G.V., Garkotin A.Yu. Nitration of Sulfate Lignin under Homogeneous Conditions Studied by Electron Spectroscopy. Izvestiya Akademii nauk. Seriya: Khimicheskaya = Russian Chemical Bulletin, 2016, vol. 65, pp. 2925–2931. https://doi.org/10.1007/s11172-016-1679-2

  7. Hai D.T.T., Gogotov A.F., Tai D.С. Nitrite-Nitrate Modification of Lignin as a Method to Obtain Pyrocondensate Thermopolymerization Inhibitors. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Proceedings of Irkutsk State Technical University, 2011, no. 4(51), pp. 100–104. (In Russ.).

  8. Ahvazi B., Wojciechowicz O., Ton-That T.-M., Hawari J. Preparation of Lignopolyols from Wheat Straw Soda Lignin. Journal of Agricultural and Food Chemistry, 2011, vol. 59, iss. 19, pp. 10505–10516. https://doi.org/10.1021/jf202452m

  9. Argyropoulos D.D.S., Crestini C., Dahlstrand C., Furusjö E., Gioia C., Jedvert K., Henriksson G., Hulteberg C., Lawoko M., Pierrou C., Samec J.S.M., Subbotina E., Wallmo H., Wimby M. Kraft Lignin: A Valuable, Sustainable Resource, Opportunities and Challenges. ChemSusChem, 2023, vol. 16, iss. 23, art. no. e202300492. https://doi.org/10.1002/cssc.202300492

  10. Bai L., Greca L.G., Xiang W., Lehtonen J., Huan S., Nugroho R.W.N., Tardy B.L., Rojas O.J. Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir, 2019, vol. 35, iss. 3, pp. 571–588. https://doi.org/10.1021/acs.langmuir.8b01288

  11. Bass G.F., Epps T.H. Recent Developments towards Performance-Enhancing Lignin-Based Polymers. Polymer Chemistry, 2021, vol. 12, no. 29, pp. 4130–4158. https://doi.org/10.1039/D1PY00694K

  12. Blanco I., Cicala G., Latteri A., Saccullo G., El-Sabbagh A.M.M., Ziegmann G. Thermal Characterization of a Series of Lignin-Based Polypropylene Blends. Journal of Thermal Analysis and Calorimetry, 2017, vol. 127, pp. 147–153. https://doi.org/10.1007/s10973-016-5596-2

  13. Dahlstrand C., Orebom A., Samec J., Sawadjoon S., Löfstedt J. Composition Comprising Derivatized Lignin for Fuel Production. Patent Application, no. WO 2016204682, 2016.

  14. Di Francesco D., Rigo D., Reddy Baddigam K., Mathew A.P., Hedin N., Selva M., Samec J.S. A New Family of Renewable Thermosets: Kraft Lignin Poly-adipates. ChemSusChem, 2022, vol. 15, iss. 11, art. no. e202200326. https://doi.org/10.1002/cssc.202200326

  15. Duval A., Lawoko M. A Review on Lignin-Based Polymeric, Micro- and Nano-Structured Materials. Reactive and Functional Polymers, 2014, vol. 85, pp. 78–96. https://doi.org/10.1016/j.reactfunctpolym.2014.09.017

  16. Goldschmid O., Maranville L.F. Improved Spent Sulfite Liquor Determination by Nitrosolignin Method. Analytical Chemistry, 1959, vol. 31, iss. 3, pp. 370–374. https://doi.org/10.1021/ac60147a012

  17. Graupner N. Application of Lignin as Natural Adhesion Promoter in Cotton Fibre-Reinforced Poly(Lactic Acid) (PLA) Composites. Journal of Materials Science, 2008, vol. 43, pp. 5222–5229. https://doi.org/10.1007/s10853-008-2762-3

  18. Grigsby W.J., Scott S.M., Plowman-Holmes M.I., Middlewood P.G., Recabar K. Combination and Processing Keratin with Lignin as Biocomposite Materials for Additive Manufacturing Technology. Acta Biomaterialia, 2020, vol. 104, pp. 95–103. https://doi.org/10.1016/j.actbio.2019.12.026

  19. Laurichesse S., Avérous L. Chemical Modification of Lignins: Towards Biobased Polymers. Progress in Polymer Science, 2014, vol. 39, iss. 7, pp. 1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

  20. Lewis H.F., Brauns F.E., Buchanan M.A., Brookbank E.B. Lignin Esters of Monoand Dibasic Aliphatic Acids. Industrial & Engineering Chemistry, 1943, vol. 35, iss. 10, pp. 1113–1117. https://doi.org/10.1021/ie50406a020

  21. Li Y., Li J., Ren B., Cheng H. Conversion of Lignin to Nitrogenous Chemicals and Functional Materials. Materials, 2024, vol. 17, no. 20, art. no. 5110. https://doi.org/10.3390/ma17205110

  22. Llevot A., Grau E., Carlotti S., Grelier S., Cramail H. From Lignin-Derived Aromatic Compounds to Novel Biobased Polymers. Macromolecular Rapid Communications, 2016, vol. 37, iss. 1, pp. 9–28. https://doi.org/10.1002/marc.201500474

  23. Naqvi M., Yan J., Dahlquist E. Black Liquor Gasification Integrated in Pulp and Paper Mills: A Critical Review. Bioresource Technology, 2010, vol. 101, iss. 21, pp. 8001– 8015. https://doi.org/10.1016/j.biortech.2010.05.013

  24. Orebom A., Verendel J.J., Samec J.S.M. High Yields of Bio Oils from Hydrothermal Processing of Thin Black Liquor without the Use of Catalysts or Capping Agents. ACS Omega, 2018, vol. 3, iss. 6, pp. 6757–6763. https://doi.org/10.1021/acsomega.8b00854

  25. Patil S.V., Argyropoulos D.S. Stable Organic Radicals in Lignin: A Review. ChemSusChem, 2017, vol. 10, iss. 17, pp. 3284–3303. https://doi.org/10.1002/cssc.201700869

  26. Qian Y., Zhong X., Li Y., Qiu X. Fabrication of Uniform Lignin Colloidal Spheres for Developing Natural Broad-Spectrum Sunscreens with High Sun Protection Factor. Industrial Crops and Products, 2017, vol. 101, pp. 54–60. https://doi.org/10.1016/j.indcrop.2017.03.001

  27. Rochester J.R. Bisphenol A and Human Health: A Review of the Literature. Reproductive Toxicology, 2013, vol. 42, pp. 132–155. https://doi.org/10.1016/j.reprotox.2013.08.008

  28. Sadeghifar H., Cui C., Argyropoulos D.S. Toward Thermoplastic Lignin Polymers. Part 1. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries. Industrial & Engineering Chemistry Research, 2012, vol. 51, iss. 51, pp. 16713–16720. https://doi.org/10.1021/ie301848j

  29. Samec J., Löfstedt J., Dahlstrand C., Orebom A., Sawadjoon S. Composition Comprising Esters of Lignin and Oil or Fatty Acids. Patent US, no. US 10030147, 2016.

  30. Sansaniwal S.K., Pal K., Rosen M.A., Tyagi S.K. Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review. Renewable and Sustainable Energy Reviews, 2017, vol. 72, pp. 363–384. https://doi.org/10.1016/j.rser.2017.01.038

  31. Sen S., Patil S., Argyropoulos D.S. Thermal Properties of Lignin in Copolymers, Blends, and Composites: A Review. Green Chemistry, 2015, vol. 17, iss. 11, pp. 4862–4887. https://doi.org/10.1039/C5GC01066G

  32. Tomani P., Axegård P., Berglin N., Lovell A., Nordgren D. Integration of Lignin Removal into a Kraft Pulp Mill and Use of Lignin as a Biofuel. Cellulose Chemistry and Technology, 2011, vol. 45, iss. 7–8, pp. 533–540.

  33. Udeni Gunathilake T.M.S., Ching Y.C., Chuah C.H. Enhancement of Curcumin Bioavailability Using Nanocellulose Reinforced Chitosan Hydrogel. Polymers, 2017, vol. 9, no. 2, art. no. 64. https://doi.org/10.3390/polym9020064

  34. Wallmo H., Theliander H., Jönsson A.-S., Wallberg O., Lindgren K. Chemical Pulping: The Influence of Hemicelluloses during the Precipitation of Lignin in Kraft Black Liquor. Nordic Pulp & Paper Research Journal, 2009, vol. 24, iss. 2, pp. 165–171. https://doi.org/10.3183/npprj-2009-24-02-p165-171

  35. Wang H., Eberhardt T.L., Wang C., Gao S., Pan H. Demethylation of Alkali Lignin with Halogen Acids and its Application to Phenolic Resins. Polymers, 2019, vol. 11, no. 11, art. no. 1771. https://doi.org/10.3390/polym11111771

  36. Williams D.L.H. Chapter 6 – Nitrosation. Nitrosation Reactions and the Chemistry of Nitric Oxide. Amsterdam, Elsevier Publ., 2004, pp. 105–115. https://doi.org/10.1016/B978-044451721-0/50007-4

  37. Zinovyev G., Sumerskii I., Korntner P., Sulaeva I., Rosenau T., Potthast A. Molar Mass-Dependent Profiles of Functional Groups and Carbohydrates in Kraft Lignin. Journal of Wood Chemistry and Technology, 2017, vol. 37, iss. 3, pp. 171–183. https://doi.org/10.1080/02773813.2016.1253103


The Use of Cationites in the Modification of Kraft Lignin with Nitrous Acid. P. 155–168

 

Make a Submission


ADP_cert_2026.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2026"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png

  

Продолжая просмотр сайта, я соглашаюсь с использованием файлов cookie владельцем сайта в соответствии с Политикой в отношении файлов cookie, в том числе на передачу данных, указанных в Политике, третьим лицам (статистическим службам сети Интернет).