Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425

Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

The Results of Experimental Studies of the Apparent Density of Wood. P. 119–130

Версия для печати

Renat Kh. Gainullin, Ruslan R. Safin, Albina V. Safina, Rishat Kh. Gainullin, Ekaterina M. Tsvetkova

Complete text of the article:

Download article (pdf, 1.1MB )

UDС

630.674(531.754)

DOI:

10.37482/0536-1036-2025-6-119-130

Abstract

The article presents the results of experimental studies of the apparent density of wood obtained under various operating modes of the pneumatic measurement system. A new technique and experimental unit have been used for the research to determine the apparent volume of porous bodies in an atmospheric air environment. For the experiments, samples of aspen, spruce, birch, pine and oak wood taken from the sapwood of tree stems have been used. The functional stability of the developed method for determining the apparent volume of porous bodies has been experimentally confirmed. Using the developed experimental unit, the apparent volumes have been measured and apparent densities of wood samples of various species have been calculated under conditions of overpressure and underpressure of the system operation. In the overpressure mode, the pneumatic system has operated at +70 and +90 kPa, and in the underpressure one at –70 and –90 kPa, respectively. It has been experimentally established that when operating the measurement system in the underpressure mode, the apparent density of wood is higher than in the overpressure mode. The values of apparent densities determined in the underpressure mode vary within the range of 1.361 to 1.434 g/cm3 for aspen, 1.151 to 1.348 g/cm3 for spruce, 1.356 to 1.402 g/cm3 for birch, 1.298 to 1.444 g/cm3 for pine and 0.99 to 1.147 g/cm3 for oak. The corresponding values of apparent densities determined in the overpressure mode have been 1.316 to 1.372 g/cm3 for aspen, 1.106 to 1.274 g/cm3 for spruce, 1.292 to 1.356 g/cm3 for birch, 1.285 to 1.412 g/cm3 for pine and 0.904 to 1.138 g/cm3 for oak. Thus, the hypothesis about the priority of applying the underpressure mode when determining the apparent volume of porous bodies in the atmospheric air environment has been confirmed. The magnitude of the largest deviation between the highest and lowest values of apparent density when determined in different modes has been, respectively: for aspen – 6.83 %, for spruce – 8.54 %, for birch – 6.35 %, for pine – 6.82 % and for oak – 3.91 %. The magnitude of the largest deviation between the maximum values of apparent density and the generally accepted value of 1.46 g/cm3 have been, respectively: for aspen – 1.78 %, for spruce – 7.67 %, for birch – 3.97 %, for pine – 1.1 % and for oak – 21.44 %.

Authors

Renat Kh. Gainullin1, Candidate of Engineering, Assoc. Prof.; ResearcherID: MIQ-8343-2025, ORCID: https://orcid.org/0000-0002-2492-8861
Ruslan R. Safin2, Doctor of Engineering, Prof.; ResearcherID: O-9355-2015, ORCID: https://orcid.org/0000-0002-0226-4232
Albina V. Safina2, Candidate of Engineering, Assoc. Prof.; ResearcherID: CAA-1333-2022, ORCID: https://orcid.org/0000-0002-7344-9242
Rishat Kh. Gainullin1, Candidate of Engineering, Assoc. Prof.; ResearcherID: MIT-0804-2025, ORCID: https://orcid.org/0000-0003-2219-2413 ORCID: https://orcid.org/0000-0002-5664-5866

Affiliation

1Volga State University of Technology, pl. Lenina, 3, Yoshkar-Ola, 424000, Russian Federation; gainyllinrh@yandex.ru, rishat_000@mail.ruEkaterinadudina@mail.ru 
2Kazan National Research Technological University, ul. K. Marksa, 68, Kazan, 420015, Russian Federation; cfaby@mail.rualb_saf@mail.ru

Keywords

wood, apparent density, measurement system, measurement modes, overpressure, underpressure

For citation

Gainullin Ren.Kh., Safin R.R., Safina A.V., Gainullin Rish.Kh., Tsetkova E.M. The Results of Experimental Studies of the Apparent Density of Wood. Lesnoy Zhurnal = Russian Forestry Journal, 2025, no. 6, pp. 119–130. https://doi.org/10.37482/0536-1036-2025-6-119-130

References

  1. Christensen G.N., Hergt H.F.A. The Apparent Density of Wood in Non-Swelling Liquids. Holzforschung, 1968, vol. 22, iss. 6, pp. 165–170. https://doi.org/10.1515/hfsg.1968.22.6.165

  2. Davidson G.F. The Specific Volume of Cotton Cellulose. Journal of the Textile Institute Transactions, 1927, vol. 18, iss. 5, pp. 175–186. https://doi.org/10.1080/19447022708661400

  3. Decoux V., Varcin E., Leban J.-M. Relationships between the Intra-Ring Wood Density Assessed by X-Ray Densitometry and Optical Anatomical Measurements in Conifers. Consequences for the Cell Wall Apparent Density Determination. Annals of Forest Science, 2004, vol. 61, no. 3, pp. 251–262. https://doi.org/10.1051/forest:2004018

  4. DIN 66137. Bestimmung der Dichte fester Stoffe – Teil 2: Gaspyknometrie. Deutsche Norm, Normenausschuss Bauwesen (NABau) im DIN, 2019. 15 p. (In Germ.). https://dx.doi.org/10.31030/3031682

  5. Dunlap F. Density of Wood Substance and Porosity of Wood. Journal of Agricultural Research, 1914, vol. 2, iss. 6, pp. 423–428.

  6. Gainullin Ren.H., Safina A.V., Gainullin Rish.H., Mukhametzyanov S.R. Determination of the True Density of Chaga by Gas Picnometry in Atmospheric Air. Journal of Physics: Conference Series, 2021, vol. 1889, art. no. 022044. https://doi.org/10.1088/1742-6596/1889/2/022044

  7. Grzeczynski T., Rybarczyk W. Investigations on the Relation between Cell-Wall Density and Wood Density. Prace Instytutu Technologii Drewna, 1972, no. 19(1/2), pp. 165–183.

  8. Hartig R. Ueber die Vertheilung der Organischen Substanz, des Wassers und Luftraumes in den Bäumen, und Über die Ursache der Wasserbewegung in Transpirirenden Pflanzen. Berlin, Verlag von Julius Springer, 1882. 112 p. (In Germ.).

  9. ISO 12154. Determination of Density by Volumetric Displacement – Skeleton Density by Gas Pycnometry, 2014. Available at: https://www.iso.org/obp/ui/#iso:std:iso:12154:ed-l:vl:en (accessed 14.03.25)

  10. Jayme G., Krause T. Über die Packungsdichte der Zellwände in Laubhölzern. Holz als Roh-und-Werkst, 1963, vol. 21, pp. 14–19. (In Germ.). https://doi.org/10.1007/BF02605990

  11. Jiang Y., Lawrence M., Ansell M.P., Hussain A. Cell Wall Microstructure, Pore Size Distribution and Absolute Density of Hemp shiv. Royal Society Open Science, 2018, vol. 5, iss. 4, art. no. 171945. https://doi.org/10.1098/rsos.171945

  12. Kollmann F.F.P., Côté W.A. Principles of Wood Science and Technology. Heidelberg, Springer Berlin, 1968. 592 p. https://doi.org/10.1007/978-3-642-87928-9

  13. Mcknight T.S., Marchessault R.H., Mason S.G. The Distribution of Pore Sizes in Wood-Pulp Fibres and Paper. Pulp and Paper Magazine of Canada, 1958, no. 59(2), pp. 81–88.

  14. Panshin A.J., De Zeeuw C. Textbook of Wood Technology. McGraw-Hill Series in Forest Resources, 1970. 705 p.

  15. Plötze M., Niemz P. Porosity and Pore Size Distribution of Different Wood Types as Determined by Mercury Intrusion Porosimetry. European Journal of Wood and Wood Products, 2010, vol. 69, pp. 649–657. https://doi.org/10.1007/s00107-010-0504-0

  16. Poluboyarinov О.I. Wood Density. Moscow, Lesnaya promyshlennost’ Publ., 1976. 160 p. (In Russ.).

  17. Quirk J.T. Cell-Wall Density of Douglas Fir by Two Optometric Methods. Wood and Fiber Science, 1984, vol. 16, no. 2, pp. 224–236.

  18. Raczkowski J., Stempień C. Zur Beziehung zwischen der Rohdichte und der Reindichte von Holz. Holz als Roh-und Werkstoff, 1967, vol. 25, pp. 380–383. (In Germ.). https://doi.org/10.1007/BF02615729

  19. Sachs J. Über die Porosität des Holzes. Arbeiten des Botanischen Instituts in Würzburg, Leipzig, Verlag von Wilhelm Engelmann, 1882, pp. 291–332. (In Germ.).

  20. Stamm A.J. Density of Wood Substance, Adsorption by Wood, and Permeability of Wood. The Journal of Physical Chemistry, 1929, vol. 33, iss. 3, pp. 398–414. https://doi.org/10.1021/j150297a008

  21. Stayton C.L., Hart C.A. Determining Pore Size Distribution in Softwoods with a Mercury Porosimeter. Forest Products Journal, 1965, no. 15(10), pp. 435–440.

  22. Tsoumis G., Passialis C. Effect of Growth Rate and Abnormal Growth on Wood Substance and Cell Wall Density. Wood Science and Technology, 1977, vol. 11, pp. 33–38. https://doi.org/10.1007/BF00353599

  23. Ugolev B.N. Wood Science with the Basics of Forest Commodity Science: 2nd ed., revised. Moscow, Lesnaya promyshlennost’ Publ., 1986. 368 p. (In Russ.).

  24. Yiannos P.N. The Apparent Cell-Wall Density of Wood and Pulp Fibers. TAPPI, 1964, vol. 47, no. 8, pp. 468–471.

  25. Zauer M., Pfriem A., Wagenführ A. Toward Improved Understanding of the CellWall Density and Porosity of Wood Determined by Gas Pycnometry. Wood Science and Technology, 2013, vol. 47, pp. 1197–1211. https://doi.org/10.1007/s00226-013-0568-1


The Results of Experimental Studies of the Apparent Density of Wood. P. 119–130

 

Make a Submission


ADP_cert_2026.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2026"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png

  

Продолжая просмотр сайта, я соглашаюсь с использованием файлов cookie владельцем сайта в соответствии с Политикой в отношении файлов cookie, в том числе на передачу данных, указанных в Политике, третьим лицам (статистическим службам сети Интернет).