Address: Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V.Lomonosov, office 1425

Phone: +7 (8182) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

Satellite Monitoring of the State of Serbian Spruce (Picea omorika (Panč.) Purk.) Stands in the Mount Veliki Stolac Area (Republic of Srpska). P. 9–32

Версия для печати

Egor V. Dmitriev, Zoran V. Govedar, Petr G. Melnik, Timofey V. Kondranin

Complete text of the article:

Download article (pdf, 3.5MB )

UDС

528.88:630*181

DOI:

10.37482/0536-1036-2025-6-9-32

Abstract

Multispectral satellite images of medium spatial resolution are the main source of data for remote sensing of stands, including the assessment of forest inventory and biological productivity parameters of stands, as well as changes in the vital status of species. The aim of this work has been to determine the effects of pyrogenic impact on one of the largest populations of Serbian spruce (Picea omorika (Panč.) Purk.) in the Mount Veliki Stolac area (the Republic of Srpska, 1,675 m above sea level) using multi-temporal multispectral Sentinel-2 imagery. Serbian spruce is a relict, endangered tree species whose total population has been declining significantly over the past 100 years. Currently, the natural habitat of this species is limited to a small area on the border of Serbia and Bosnia and Herzegovina. To analyze satellite data, a multi-stage method has been proposed that has allowed identifying the Serbian spruce population in the surveyed areas, determining the dynamics of changes in vital status over the past 10 years, and assessing the effects of the forest fire that occurred in this area in 2021. It has been revealed that approximately 50 % of Serbian spruce stands have been damaged, with the species predicted to die for 1/2 of these areas. The greatest damage has been caused to the stands in the central part of the northern slope of Mount Veliki Stolac. Average estimates of the areas of vital status for the recovery period are: healthy – 17.6 ha, weakened – 8.4 ha, damaged – 8.0 ha, drying out – 1.2 ha. The analysis of vegetation indices has shown the absence of significant trends towards natural regeneration of Serbian spruce. The examination of images for 2024 allows us to reasonably assume that the process of replacing Serbian spruce with deciduous species has begun, while no improvement in the vital status of the Serbian spruce population is expected. Thus, in order to preserve this population, it is necessary to carry out reforestation of this valuable relict species.

Authors

Egor V. Dmitriev1,2, Candidate of Physics and Mathematics, Assoc. Prof., Senior Research Scientist; ResearcherID: E-4794-2014, ORCID: https://orcid.org/0000-0001-5363-3934
Zoran V. Govedar3,4, Corresponding Member of the Academy of Sciences and Arts of the Republic of Srpska, Doctor of Agriculture, Prof.; ResearcherID: AAH-6314-2019, ORCID: https://orcid.org/0000-0001-9791-4113
Petr G. Melnik5, Candidate of Agriculture, Assoc. Prof.; ResearcherID: E-7644-2014, ORCID: https://orcid.org/0000-0002-2802-7614
Timofey V. Kondranin1, Doctor of Physics and Mathematics, Prof.; ResearcherID: K-9407-2013, ORCID: https://orcid.org/0000-0003-3565-3194

Affiliation

1Moscow Institute of Physics and Technology (National Research University), per. Institutskiy, 9, Dolgoprudny, Moscow Region, 141701, Russian Federation; yegor@mail.rukondr@kondr.rector.mipt.ru
2Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, ul. Gubkina, 8, Moscow, 119333, Russian Federation; yegor@mail.ru
3University of Banja Luka, Faculty of Forestry, blv. Petar Bojovic, 1a, Banja Luka, Republic of Srpska, 78000, Bosnia and Herzegovina; zoran.govedar@sf.unibl.org
4Academy of Sciences and Arts of the Republic of Srpska, blv. Ban Lazarevic, 1, Banja Luka, Republic of Srpska, 78000, Bosnia and Herzegovina; zoran.govedar@sf.unibl.org
5Bauman Moscow State Technical University (Mytishchi Branch) (National Research University), ul. 1-ya Institutskaya, 1, Mytishchi, Moscow Region, 141005, Russian Federation; melnik_petr@bk.ru

Keywords

remote sensing, pattern recognition, satellite imagery, forest fires, Serbian spruce, Picea omorika (Panč.) Purk

For citation

Dmitriev E.V., Govedar Z.V., Melnik P.G., Kondranin T.V. Satellite Monitoring of the State of Serbian Spruce (Picea omorika (Panč.) Purk.) Stands in the Mount Veliki Stolac Area (Republic of Srpska). Lesnoy Zhurnal = Russian Forestry Journal, 2025, no. 6, pp. 9–32. (In Russ.). https://doi.org/10.37482/0536-1036-2025-6-9-32

References

  1. Dmitriev E.V., Kozub V.A., Melnik P.G., Sokolov A.A., Safonova A.N. Classification and Assessment of the State of Mixed Forests from Very High Spatial Resolution Airborne Images. Lesnoy Zhurnal = Russian Forestry Journal, 2019, no. 5, pp. 9–24. (In Russ.). https://doi.org/10.17238/issn0536-1036.2019.5.9

  2. Dmitriev Y.V., Melnik P.G., Donskoy S.A., Kondranin T.V. Improving Efficiency of Tree Canopy Texture Segmentation by Using Very High Spatial Resolution Satellite Images. Lesnoy vestnik = Forestry Bulletin, 2023, vol. 27, no. 5, pp. 25–36. (In Russ.). https://doi.org/10.18698/2542-1468-2023-5-25-36

  3. Kobel’kov M.E., Chukanov M.A., Khotin D.V. Condition Categories of the Main Forest-Forming Species in the Moscow Region. Moscow, 2000. 40 p. (In Russ.).

  4. Kolomyts E.G., Sevost’yanov S.M. Landscape-Ecological Strategy for Forest Geosystem Monitoring under the Conditions of Modern Warming. Problemy regionalnoj ekologii = Regional Environmental Issues, 2022, no. 4, pp. 39–47. (In Russ.). https://doi.org/10.24412/1728-323X-2022-4-39-47

  5. Krivets S.A., Kerchev I.A., Bisirova E.M., Pashenova N.V., Demidko D.A., Pet’ko V.M., Baranchikov Yu.N. Four-Eyed Fir Bark Beetle in Siberian Forests (Distribution, Biology, Ecology, Detection and Survey of Damaged Stands): Study Guide. Tomsk, Krasnoyarsk, 2015. 48 p. (In Russ.).

  6. Lazareva A.A., Slauta A.A., Afonina T.E. Monitoring Geosystems of Specially Protected Natural Territories in the Conditions of Anthropogenous Load. Nauka. Innovatsii. Tekhnologii = Science. Innovations. Technologies, 2019, no. 1, pp. 35–46. (In Russ.). https://doi.org/10.37495/2308-4758-2019-1-35-46

  7. Osovskij S. Neural Networks for Information Processing. Trans. from Pol. By I.D. Rudinskij. Moscow, Finansy i statistika Publ., 2004. 343 p. (In Russ.).

  8. Adamović L. Die Vegetationsverhältnisse der Balkanländer (Mösische Länder): umfassend Serbien, Altserbien, Bulgarien, Ostrumelien, Nordthrakien und Nordmazedonien. Leipzig, Engelmann Verlag, 1909. 567 p. (In Germ.).

  9. Adjognon G.S., Rivera-Ballesteros A., van Soest D. Satellite-Based Tree Cover Mapping for Forest Сonservation in the Drylands of Sub Saharan Africa (SSA): Application to Burkina Faso Gazetted Forests. Development Engineering, 2019, vol. 4, art. no. 100039. https://doi.org/10.1016/j.deveng.2018.100039

  10. Aleksić J.M., Ballian D., Isajev D., Mataruga M., Christian T., Gardner M. Picea omorika. The IUCN Red List of Threatened Species, 2017. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T30313A84039544.en

  11. Ballian D. Kontrola podrijetla Pančićeve omorike (Picea omorika Panč./ Purk.) iz plantaže kod Kaknja pomoću izoenzimskih biljega. Šumarski list, 2006, vol. 130, no. 7–8, pp. 295–304. (In Serb.).

  12. Barnes E.M., Clarke T.R., Richards S.E., Colaizzi P.D., Haberland J., Kostrzewski M., Waller P., Choi C., Riley E., Thompson T., Lascano R.J., Li H., Moran M.S. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using GroundBased Multispectral Data. Proceedings of the Fifth International Conference on Precision Agriculture. USA, Minnesota, Bloomington, 2000. 15 p.

  13. Boiarskii B., Hasegawa H. Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content. Journal of Mechanics of Continua and Mathematical Sciences, 2019, spec. iss. no. 4, pp. 20–29. https://doi.org/10.26782/jmcms.spl.4/2019.11.00003

  14. Burschel P. Die Omorikafichte. Forstarchiv, 1965, vol. 36, pp. 113–131. (In Germ.).

  15. Čolić D. Porijeklo i sukcesija šumskih zajednica sa Pančićevom omorikom (Picea omorika Panč.) na planini Tari. Zaštita prirode, 1965, vol. 29–30, pp. 65–90. (In Serb.).

  16. Čolić D. Požar kao ekološki faktor u sukcesiji zajednica Pančićeve omorike i redukovanju njenog areala. Zaštita prirode, 1966, vol. 33, pp. 1–167. (In Serb.).

  17. Čolić D. Spontana obnova Pančićeve omorike (Picea omorika Panč.) posle požara. Zaštita prirode, 1987, vol. 40, pp. 37–56. (In Serb.).

  18. Dietterich T.G., Bakiri G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 1995, vol. 2, pp. 263–286. https://doi.org/10.1613/jair.105

  19. Dizdarević M., Lakušić R., Grgić P., Kutleša L., Pavlović B., Jonlija R. Ekološke osnove poimanja reliktnosti vrste Picea omorica Pančić. Bilten Društva ekologa BiH, Serija A, 1984, vol. 2, pp. 7–56. (In Serb.).

  20. Dmitriev E.V. Classification of the Forest Cover of Tver Oblast Using Hyperspectral Airborne Imagery. Izvestiya, Atmospheric and Oceanic Physics, 2014, vol. 50, pp. 929–942. https://doi.org/10.1134/s0001433814090072

  21. Dmitriev E.V., Kondranin T.V., Zotov S.A. Segmentation of Natural and Anthropogenic Objects by Panchromatic Satellite Images Using Statistical Textural Features. Optoelectronics, Instrumentation and Data Processing, 2022, vol. 58, pp. 167–179. https://doi.org/10.3103/s8756699022020029

  22. Fukarek P. Staništa Pančićeve omorike nakon šumskih požara u 1946/47 godini. Šumarski list, 1951, vol. 75, pp. 61–75. (In Serb.).

  23. Fukarek P., Fukarek Đ. Sukcesivni niz subasocijacija unutar zajednica omorike (Piceetum omorikae Tregubov, emend. P. Fukarek) u njenim sastojinama u istočnoj Bosni. Šumarski list, 1989, vol. 113, no. 11–12, pp. 567–580. (In Serb.).

  24. Gao B.-с. NDWI – A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 1996, vol. 58, iss. 3, pp. 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3,1996.A

  25. Gitelson A.A., Viña A., Ciganda V., Rundquist D.C., Arkebauer T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophysical Research Letters, 2005, vol. 32, iss. 8. art. no. L08403. https://doi.org/10.1029/2005GL022688

  26. Govedar Z., Krstić M., Stanivuković Z. Categorisation of Trees in Serbian Spruce Natural Stands in the Region of Govza in the Republic of Srpska. 50 Godini Lesotehničeski Universitet. Bulgaria, Sofia, 2003, pp. 96–101.

  27. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction: 2nd ed. New York, Springer, 2009. 745 p. https://doi.org/10.1007/978-0-387-84858-7

  28. Hou W., Li D., Xu C., Zhang H., Li T. An Advanced k Nearest Neighbor Classification Algorithm Based on KD-tree. 2018 IEEE International Conference of Safety Produce Informatization (IICSPI). China, Chongqing, 2018, pp. 902–905. https://doi.org/10.1109/IICSPI.2018.8690508

  29. IUCN, 2021. The IUCN Red List of Threatened Species. Version 2020-3. Available at: https://www.iucnredlist.org/ (accessed 15.08.24).

  30. Ivetić V., Aleksić J.M. Response of Rare and Endangered Species Picea omorika to Climate Change – The Need for Speed. Reforesta, 2016, vol. 2, pp. 81–99. https://doi.org/10.21750/REFOR.2.09.24

  31. Keeley J.E. Fire Intensity, Fire Severity and Burn Severity: a Brief Review and Suggested Usage. International Journal of Wildland Fire, 2009, vol. 18, iss. 1, pp. 116–126. https://doi.org/10.1071/WF07049

  32. Knipling E.B. Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from Vegetation. Remote Sensing of Environment, 1970, vol. 1, iss. 3, pp. 155–159. https://doi.org/10.1016/S0034-4257(70)80021-9

  33. Mataruga M., Milanović Đ., Ćurić A. Smjernice za očuvanje Pančićeve omorike – in situ. Republic Institute for the Protection of Cultural, Historical and Natural Heritage, 2024. 83 p. (In Serb.).

  34. Mataruga M., Piotti A., Daničić V., Cvjetković B., Fussi B., Konnert M., Vendramin G.G., Aleksić J.M. Towards the Dynamic Conservation of Serbian Spruce (Picea omorika) Western Populations. Annals of Forest Science, 2020, vol. 77, art. no. 1. https://doi.org/10.1007/s13595-019-0892-1

  35. Maly M. Beiträge zur Kenntnis der Picea omorika. Glasnik Zemallj, Muzeja BiH, 1934, vol. 46, pp. 37–64. (In Germ.).

  36. Pančić J. Omorika nova fela četinara u Srbiji. Beograd, Težak, 1887, vol. XVIII, no. 1, pp. 1–8. (In Serb.).

  37. Rasmussen C.E., Williams C.K.I. Gaussian Processes for Machine Learning. Massachusetts, Cambridge, MIT Press, 2006. 247 p. https://doi.org/10.7551/mitpress/3206.001.0001

  38. Rouse J.W.Jr., Haas R.H., Scheel J.A., Deering D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. Proceedings of the 3rd Earth Resource Technology Satellite-1 (ERTS-1) Symposium, 1974, vol. 1, pp. 48–62.

  39. Shaw R.G., Etterson J.R. Rapid Climate Change and the Rate of Adaptation: Insight from Experimental Quantitative Genetics. New Phytologist, 2012, vol. 195, iss. 4, pp. 752–765. https://doi.org/10.1111/j.1469-8137.2012.04230.x

  40. Scogings P.F. Perspective: Monitoring Global Forests Using Only Structural Metrics – Problems and Solutions from a Savanna Viewpoint. Forest Ecology and Management, 2023, vol. 546, art. no. 121381. https://doi.org/10.1016/j.foreco.2023.121381

  41. Sims D.A., Gamon J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sensing of Environment, 2002, vol. 81, iss. 2–3, pp. 337–354. https://doi.org/10.1016/S0034-4257(02)00010-X

  42. Stojanović O. Prirast i oblik stabla Pančićeve omorike na njenom prirodnom staništu. Radovi Šumarskog fakulteta i Instituta za šumarstvo i drvnu industriju u Sarajevu, 1959, vol. 7(4), pp. 163–188. (In Serb.). https://doi.org/10.54652/rsf.1959.v7.i4.403

  43. Taloor A.K., Manhas D.S., Kothyari G.C. Retrieval of Land Surface Temperature, Normalized Difference Moisture Index, Normalized Difference Water Index of the Ravi Basin using Landsat Data. Applied Computing and Geosciences, 2021, vol. 9, art. no. 100051. https://doi.org/10.1016/j.acags.2020.100051

  44. Talukdar N.R., Ahmad F., Goparaju L., Choudhury P., Arya R., Qayum A., Rizvi J. Forest Fire Estimation and Risk Prediction Using Multispectral Satellite Images: Case Study. Natural Hazards Research, 2024, vol. 4, iss. 2, pp. 304–319. https://doi.org/10.1016/j.nhres.2024.01.007

  45. Tomppo E., Olsson H., Ståhl G., Nilsson M., Hagner O., Katila M. Combining National Forest Inventory Field Plots and Remote Sensing Data for Forest Databases. Remote Sensing of Environment, 2008, vol. 112, iss. 5, pp. 1982–1999. https://doi.org/10.1016/j.rse.2007.03.032

  46. Tošić M. O jednom novom nalazištu pančićeve omorike (Picea omorika Pančić) u Srbiji. Radovi ANUBiH. Odjeljenje prirodnih i tehničkih nauka, 1983, vol. 72(21), pp. 267– 274. (In Serb.).

  47. Vapnik V.N. The Nature of Statistical Learning Theory: 2nd ed. New York, Springer, 1999. 314 p. https://doi.org/10.1007/978-1-4757-3264-1

  48. Wang S., Li H., Niu S. Empirical Research on Climate Warming Risks for Forest Fires: A Case Study of Grade I Forest Fire Danger Zone, Sichuan Province, China. Sustainability, 2021, vol. 13, no. 14, art. no. 7773. https://doi.org/10.3390/su13147773

  49. Wang X.-Q., Ran J.-H. Evolution and Biogeography of Gymnosperms. Molecular Phylogenetics and Evolution, 2014, vol. 75, pp. 24–40. https://doi.org/10.1016/j.ympev.2014.02.005

  50. Wang H., Shao X.-m., Jiang Y., Fang X.-q., Wu S.-h. The Impacts of Climate Change on the Radial Growth of Pinus koraiensis along Elevations of Changbai Mountain in Northeastern China. Forest Ecology and Management, 2013, vol. 289, pp. 333–340. https://doi.org/10.1016/j.foreco.2012.10.023

  51. Wettstein R. Das Vorkommen der Picea Omorica (Panč.) Willk. in Bosnien. Oesterreichische botanische Zeitschrift, 1890a, vol. 40, no. 10, pp. 357–361. (In Germ.).

  52. Wettstein R. Die Omorika-Fichte, Picea omorika (Panč.). Eine monographische Studie. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, 1890b, vol. 99, no. 10, pp. 502–565. (In Germ.).

  53. Woinarski J.C.Z., Legge S., Lindenmayer D.B., Robinson N.M., Scheele B.C., Southwell D.M., Wintle B.A. A Framework for Evaluating the Adequacy of Monitoring Programs for Threatened Species. Monitoring Threatened Species and Ecological Communities. Clayton, CSIRO Publ., 2018, pp. 13–20.

  54. Woodmansee R.G., Wallach L.S. Effects of Fire Regimes on Biogeochemical Cycles. Fire Regimes and Ecosystem Properties: Proceedings of the Conference. Washington, D.C., USDA Forest Service, General Technical Report WO-GTR-26, 1981, pp. 379–400.

  55. Xie D., Du H., Xu W.-H., Ran J.-H., Wang X.-Q. Effects of Climate Change on Richness Distribution Patterns of Threatened Conifers Endemic to China. Ecological Indicators, 2022, vol. 136, art. no. 108594. https://doi.org/10.1016/j.ecolind.2022.108594

  56. Xu Y., Zang R. Conservation of Rare and Endangered Plant Species in China. iScience, 2023, vol. 26, iss. 2, art. no. 106008. https://doi.org/10.1016/j.isci.2023.106008


Satellite Monitoring of the State of Serbian Spruce (Picea omorika (Panč.) Purk.) Stands in the Mount Veliki Stolac Area (Republic of Srpska). P. 9–32

 

Make a Submission


ADP_cert_2026.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2026"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png

  

Продолжая просмотр сайта, я соглашаюсь с использованием файлов cookie владельцем сайта в соответствии с Политикой в отношении файлов cookie, в том числе на передачу данных, указанных в Политике, третьим лицам (статистическим службам сети Интернет).