Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

Improving the Technological Cycle of Microclonal Propagation of Rubus chamaemorus L. P. 214–226

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

Aleksandr M. Antonov, Anton I. Chudetsky, Yuliya S. Cheryatova, Irina B. Kuznetsova, Elena I. Kulikova

Complete text of the article:

Download article (pdf, 0.6MB )

UDС

634.71:57.082.261

DOI:

10.37482/0536-1036-2024-5-214-226

Abstract

The results of the study of the microclonal propagation of the cloudberry (Rubus chamaemorus L.) of the Leningradskaya and Kondinskaya forms at the stages of microclonal propagation itself and rooting of microshoots in in vitro culture are presented. R. chamaemorus is one of the most popular bog berry plants in the countries of Northern Europe and the northern regions of Russia, possessing highly valuable nutritional and pharmacological properties. In order to intensify industrial berry growing in Russia and meet the market demand for berry products in the context of import substitution, it is necessary to use high-tech methods for obtaining planting material. In order to preserve the valuable gene pool and accelerate the production of a large amount of healthy planting material of R. chamaemorus forms, it is necessary to improve and optimize the technologies or microclonal propagation of this species. The largest number (on average 9.6–9.9 pcs.) and the total length (16.4– 19.5 cm) of R. chamaemorus microshoots in in vitro culture at the stage of microclonal propagation itself have been observed on the Murashige and Skoog culture medium. An increase in the concentration of the “Dropp” preparation from 0.1 to 0.2 mg/l in the culture medium has contributed to an increase in the number of R. chamaemorus microshoots (on average by 1.8–2.4 times), an increase in their total length in the Konsinskaya form (by 1.5 times) and its decrease in the Leningradskaya form (by 1.1 times). The largest number (on average 3.9–4.6 pcs.) and the total length (13.2–14.0 cm) of R. chamaemorus roots at the stage of microshoot rooting in vitro have been noted on the Murashige and Skoog culture medium. An increase in the concentration of indolebutyric acid from 0.5 to 1.0 mg/l in the culture medium has contributed to an increase in the number of R. chamaemorus roots (on average by 1.4 times) and a decrease in their total length (by 1.15–1.25 times).

Authors

Aleksandr M. Antonov1, Candidate of Agriculture, Assoc. Prof.; ResearcherID: R-4605-2019, ORCID: https://orcid.org/0000-0002-7076-233X
Anton I. Chudetsky2*, Candidate of Agriculture, Assoc. Prof.; ResearcherID: H-1210-2019, ORCID: https://orcid.org/0000-0003-4804-7759
Yuliya S. Cheryatova2, Candidate of Biology, Assoc. Prof.; ORCID: https://orcid.org/0000-0001-5614-2225
Irina B. Kuznetsova3, Candidate of Agriculture, Assoc. Prof.; ResearcherID: AAB-4568-2021, ORCID: https://orcid.org/0000-0001-5011-3271
Elena I. Kulikova4, Candidate of Agriculture, Assoc. Prof.; ResearcherID: AAL-8290-2021, ORCID: https://orcid.org/0000-0002-5981-2690

Affiliation

1Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; a.antonov@narfu.ru
2Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, ul. Timiryazevskaya, 49, Moscow, 127550, Russian Federation; a.chudetsky@mail.ru*, u.cheryatova@rgau-msha.ru
3Kostroma State Agricultural Academy, Uchebny Gorodok, Karavayevskaya s/a, 34, Karavaevo Settlement, Kostroma District, Kostroma Region, 156530, Russian Federation; sonnereiser@yandex.ru
4Vologda State Dairy Farming Academy named after N.V. Vereshchagin, ul. Schmidta, 2, Molochnoe Village, Vologda, Vologda Region, 160555, Russian Federation; elena-kulikova@list.ru

Keywords

cloudberry, forest berry plants, in vitro, growth regulators, culture medium, microclonal propagation

For citation

Antonov A.M., Chudetsky A.I., Cheryatova Yu.S., Kuznetsova I.B., Kulikova E.I. Improving the Technological Cycle of Microclonal Propagation of Rubus chamaemorus L. Lesnoy Zhurnal = Russian Forestry Journal, 2024, no. 5, pp. 214–226. (In Russ.). https://doi.org/10.37482/0536-1036-2024-5-214-226

References

  1. Antonov A.M., Makarov S.S., Kulikova E.I., Kulchitsky A.N., Kuznetsova I.B. Peculiarities of Root Formation of Male Plants of Cloudberry (Rubus chamaemorus L.) of Northern Russian Origin in in vitro Culture. Izvestia Orenburg State Agrarian University, 2023, no. 4 (102), pp. 125–130. (In Russ.). https://doi.org/10.37670/2073-0853-2023-102-4-125-130

  2. Distribution Areas of Medicinal and Related Plants of the USSR (Atlas). Ed. by V.M. Shmidt. Leningrad, Leningrad University Publ., 1983. 208 p. (In Russ.).

  3. Dospekhov B.A. Field Experiment Methodology (with the Basics of Statistical Processing of Research Results). 6th ed. Moscow, Al’yans Publ., 2011. 350 p. (In Russ.).

  4. Zontikov D.N., Zontikova S.A., Malahova K.V. Influence of the Composition of Nutrient Media and Growth Regulators during Clonal Micropropagation of Some Economically Valuable Representatives of the Genus Rubus L. Agrokhimiya = Eurasian Soil Science, 2021, no. 6, pp. 36–42. (In Russ.). https://doi.org/10.31857/S0002188121060144

  5. Kositsyn V.N. Cloudberry: Biology, Resource Potential, Introduction to Culture: Monograph. Moscow, All-Russian Research Institute of Forestry and Forestry Mechanization Publ., 2001. 140 p. (In Russ.).

  6. Makarov S.S., Antonov A.M., Kulikova E.I., Kuznetsova I.B., Kulchitsky A.N. Root Formation of Female Plants of Cloudberry (Rubus chamaemorus L.) in vitro. Vestnik KrasGAU = the Bulletin of KrasGAU, 2023, no. 10 (199), pp. 138–144. (In Russ.).

  7. Makarov S.S., Antonov A.M., Kulikova E.I., Chudetsky A.I., Solov’ev A.V. Biotechnology in Horticulture. Growing Fruit and Rare Berry Plants in in vitro Culture: Laboratory Tutorial. St. Petersburg, Lan’ Publ., 2023. 128 p. (In Russ.).

  8. Makarov S.S., Kuznetsova I.B., Upadyshev M.T., Rodin S.A., Chudetsky A.I. Clonal Micropropagation of Cranberry (Oxycoccus palustris Pers.). Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology, 2021, vol. 51, no. 1, pp. 67–76. (In Russ.). https://doi.org/10.21603/2074-9414-2021-1-67-76

  9. Makarov S.S., Upadyshev M.T., Sungurova N.R., Tyukavina O.N., Kulikova E.I., Kuznetsova I.B. Clonal Micropropagation of Wild Berry Plants of the Genus Rubus. Tekhnika i tekhnologiya pishchevykh proizvodstv = Food Processing: Techniques and Technology, 2024, vol. 54, no. 1, pp. 60–70. (In Russ.). https://doi.org/10.21603/2074-9414-2024-1-2488

  10. Sklyarenko M. Berries are Growing. Ekspert Severo-Zapad, 2019, no. 11 (772), pp. 18–21. (In Russ.).

  11. Strakh Ya.L., Ignatovets O.S. Chemical Composition and Biological Activity of Metabolites of Rubus chamaemorus L. Vesci Nacyjanal’naj akademii navuk Belarysi. Seryja bijalagičnych navuk = Proceedings of the National Academy of Sciences of Belarus, Biological Series, 2022, vol. 67, no. 3, pp. 321–331. (In Russ.). https://doi.org/10.29235/1029-8940-2022-67-3-321-331

  12. Sharoglazova L.P., Rygalova E.A., Velichko N.A. The Justification of the Shelf Life and the Quality Assessment of Juice-Containing Drinks Based on Genus Rubus Berries. Vestnik KrasGAU = the Bulletin of KrasGAU, 2020, no. 3 (156), pp. 129–134. (In Russ.). https://doi.org/10.36718/1819-4036-2020-3-129-134

  13. Aguilera-Correa J.J., Fernández-López S., Cuñas-Figueroa I.D., Pérez-Rial S., Alakomi H.L., Nohynek L., Oksman-Caldentey K.M., Salminen J.P., Esteban J., Cuadros J., Puupponen-Pimiä R., Perez-Tanoira R., Kinnari T.J. Sanguiin H-6 Fractionated from Cloudberry (Rubus chamaemorus) Seeds Can Prevent the Methicillin-Resistant Staphylococcus aureus Biofilm Development during Wound Infection. Antibiotics, 2021, vol. 10, no. 12, art. no. 1481. https://doi.org/10.3390/antibiotics10121481

  14. Aguilera-Correa J.J., Nohynek L., Alakomi H.L., Esteban J., Oksman-Caldentey K.M., Puupponen-Pimiä R., Kinnari T.J., Perez-Tanoira R. Reduction of Methicillin-Resistant Staphylococcus aureus Biofilm Growth and Development Using Arctic Berry Extracts. Frontiers in Cellular and Infection Microbiology, 2023, vol. 13, art. no. 1176755. https://doi.org/10.3389/fcimb.2023.1176755

  15. Brown A.O., McNeil J.N. Pollination Ecology of the High Latitude, Dioecious Cloudberry (Rubus chamaemorus; Rosaceae). American Journal of Botany, 2009, vol. 96, iss. 6, pp. 1096–1107. https://doi.org/10.3732/ajb.0800102

  16. Debnath S.C. A Two-Step Procedure for in vitro Multiplication of Cloudberry (Rubus chamaemorus L.) Shoots Using Bioreactor. Plant Cell Tissue and Organ Culture, 2007, vol. 88, pp. 185–191. https://doi.org/10.1007/s11240-006-9188-x

  17. Debnath S.C., Ghosh A. Phenotypic Variation and Epigenetic Insight into Tissue Culture Berry Crops. Frontiers in Plant Science, 2022, vol. 13, art. no. 1042726. https://doi.org/10.3389/fpls.2022.1042726

  18. Debnath S.C., Goyali J.C. In vitro Propagation and Variation of Antioxidant Properties in Micropropagated Vaccinium Berry Plants – A Review. Molecules, 2020, vol. 25, no. 4, art. no. 788. https://doi.org/10.3390/molecules25040788

  19. Faleva A.V., Ul’yanovskii N.V., Onuchina A.A., Falev D.I., Kosyakov D.S. Comprehensive Characterization of Secondary Metabolites in Fruits and Leaves of Cloudberry (Rubus chamaemorus L.). Metabolites, 2023, vol. 13, no. 5, art. no. 598. https://doi.org/10.3390/metabo13050598

  20. Gao X.-F., Xiong X.-H., Boufford D.E., Gao Y.-D., Xu B., Zhang C. Phylogeny of the Diploid Species of Rubus (Rosaceae). Genes, 2023, vol. 14, no. 6, art. no. 1152. https://doi.org/10.3390/genes14061152

  21. Huerta-Olalde A.M., Hernández-García A., López-Gómez R., Fernández-Pavía S.P., Zavala-Páramo M.G., Salgado-Garciglia R. In vitro Selection of Blackberry (Rubus fruticosus ‘Tupy’) Plants Resistant to Botrytis cinerea Using Gamma Ray-Irradiated Shoot Tips. Plant Biotechnology, 2022, vol. 39, iss. 2, pp. 165–171. https://doi.org/10.5511/plantbiotechnology.22.0312b

  22. Kellogg J., Wang J., Flint C., Ribnicky D., Kuhn P., Mejia de E.G., Raskin I., Lila M.A. Alaskan Wild Berry Resources and Human Health Under the Cloud of Climate Change. Journal of Agricultural and Food Chemistry, 2010, vol. 58, iss. 7, pp. 3884–3900. https://doi.org/10.1021/jf902693r

  23. Kolosova V., Belichenko O., Rodionova A., Melnikov D., Sõukand R. Foraging in Boreal Forest: Wild Food Plants of the Republic of Karelia, NW Russia. Foods, 2020, vol. 9, no. 8, art. no. 1015. https://doi.org/10.3390/foods9081015

  24. Leišová-Svobodová L., Phillips J., Martinussen I., Holubec V. Genetic Differentiation of Rubus chamaemorus Populations in the Czech Republic and Norway after the Last Glacial Period. Ecology and Evolution, 2018, vol. 8, iss. 11, pp. 5701–5711. https://doi.org/10.1002/ece3.4101

  25. Makarov S.S., Kuznetsova I.B., Chudetsky A.I., Rodin S.A. Obtaining High-Quality Planting Material of Forest Berry Plants by Clonal Micropropagation for Restoration of Cutover Peatlands. Lesnoy Zhurnal = Russian Forestry Journal, 2021, no. 2, pp. 21–29. https://doi.org/10.17238/0536-1036-2021-2-21-29

  26. Martinussen I., Nilsen G., Svenson L., Junttila O., Rapp K. In vitro Propagation of Cloudberry (Rubus chamaemorus). Plant Cell, Tissue and Organ Culture, 2004, vol. 78, pp. 43–49. https://doi.org/10.1023/B:TICU.0000020392.85854.28

  27. Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Phisiologia Plantarum, 1962, vol. 15, iss. 3, pp. 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

  28. Murthy H.N., Joseph K.S., Paek K.Y., Park S.Y. Bioreactor Systems for Micropropagation of Plants: Present Scenario and Future Prospects. Frontiers in Plant Science, 2023, vol. 14, art. no. 1159588. https://doi.org/10.3389/fpls.2023.1159588

  29. Mutanen М., Pajari A.M., Paivarinta E., Misikangas M., Rajakangas J., Marttinen M., Oikarinen S. Berries as Chemopreventive Dietary Constituents – a Mechanistic Approach with the ApcMin/+ Mouse. Asia Pacific Journal of Clinical Nutrition, 2008, vol. 17, suppl. 1, pp. 123–125.

  30. Nohynek L., Bailey M., Tähtiharju J., Seppänen-Laakso T., Rischer H., Oksman-Caldentey K.-M., Puupponen-Pimiä R. Cloudberry (Rubus chamaemorus) Cell Culture with Bioactive Substances: Establishment and Mass Propagation for Industrial Use. Engineering in Life Sciences, 2014, vol. 14, iss. 6, pp. 667–675. https://doi.org/10.1002/elsc.201400069

  31. Pajari A.-M., Päivärinta E., Paavolainen L., Vaara E., Koivumäki T., Garg R., Heiman-Lindh A., Mutanen M., Marjomäki V., Ridley A.J. Ellagitannin-Rich Cloudberry Inhibits Hepatocyte Growth Factor Induced Cell Migration and Phosphatidylinositol 3-Kinase/ AKT Activation in Colon Carcinoma Cells and Tumors in Min Mice. Oncotarget, 2016, vol. 7, no. 28, pp. 43907–43923. https://doi.org/10.18632/oncotarget.9724

  32. Pemmari T., Hämäläinen M., Ryyti R., Peltola R., Moilanen E. Cloudberry (Rubus chamaemorus L.) Supplementation Attenuates the Development of Metabolic Inflammation in a High-Fat Diet Mouse Model of Obesity. Nutrients, 2022, vol. 14, no. 18, art. no. 3846. https://doi.org/10.3390/nu14183846

  33. Thiem B. Micropropagation of Cloudberry (Rubus chamaemorus L.) by Initiation of Axillary Shoots. Acta Societatis Botanicorum Poloniae, 2001, vol. 70, no. 1, pp. 11–16.

  34. Thiem B. Rubus chamaemorus L. – a Boreal Plant Rich in Biologically Active Metabolites: a Review. Biological Letters, 2003, vol. 40, pp. 3–13.

  35. Turdiyev T., Kovalchuk I., Mukhitdinova Z., Hunger O., Frolov S., Kabylbekova B. Micropropagation of Berry Crops for Creation of Germplasm Cryobanks. Brazilian Journal of Biology, 2023, vol. 84, art. no. e266975. https://doi.org/10.1590/1519-6984.266975

  36. Zakaria H., Hussein G.M., Abdel-Hadi A.H.A., Abdallah N.A. Improved Regeneration and Transformation Protocols for Three Strawberry Cultivars. GM Crops & Food, 2014, vol. 5, iss. 1, pp. 27–35. https://doi.org/10.4161/gmcr.27229



 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png