Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

Generic Models of Willow (genus Salix L.) Tree Phytomass: a Meta-Analysis. P. 64–75

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

Andrey А. Paramonov, Vladimir A. Usoltsev, Sergey V. Tretyakov, Ilya V. Tsvetkov, Ivan S. Tsepordey

Complete text of the article:

Download article (pdf, 0.6MB )

UDС

630*5/6

DOI:

10.37482/0536-1036-2024-5-64-75

Abstract

Climate change has a negative impact on the environment, including forest ecosystems. However, forests are not only passive objects affected by climate change, but also, due to their ability to absorb and accumulate carbon, they themselves can significantly influence this process. Carbon sequestration by forest ecosystems plays an important role in mitigating the effects of climate change. Therefore, it is necessary to know about the amount of carbon stored in forest phytomass, and it is becoming increasingly important to accurately determine the phytomass of forest trees. Due to the absorption of carbon dioxide during plant growth and its release during wood burning, forests are a carbon-neutral energy source. The idea of using phytomass as an energy source to replace fossil fuels is most promising for fast-growing species. These include willows (genus Salix L.), native to Europe, Asia, America and Africa and found from the tundra to the tropics. Willow is successfully used as fuel in many countries, showing excellent growth and productivity even at juvenile stages and, under certain climatic conditions, having the highest capacity among woody plants to convert solar radiation into phytomass. Short-rotation willow plantations represent an ecologically promising energy resource for reducing greenhouse gas levels. Since the development of phytomass models is a laborious process, so-called “generic meta-models” are used. The aim of this study has been to construct generic models of both aboveground phytomass and phytomass fractions (foliage, branches, stem, roots) of willow trees based on meta-analysis of data. In the course of the work, the models have been constructed for assessing the aboveground phytomass of trees both in diameter at the stem base and in diameter at breast height, the information content of which is close to functional, and the biases are only about 2 %. Since each fraction of phytomass has a specific carbon-sequestering capacity and makes a different contribution to the carbon balance, generic models have been developed to estimate the mass of foliage, branches, stems and roots in relation to the aboveground phytomass of trees, explaining from 82 % (for foliage) to 99 % (for stems and roots) of the total variability of phytomass.

Authors

Andrey А. Paramonov1, Candidate of Agriculture, Research Scientist; ResearcherID: ABH-7242-2020, ORCID: https://orcid.org/0000-0002-0961-221X
Vladimir A. Usoltsev 2,4*, Doctor of Agriculture, Prof.; ResearcherID: M-8253-2018, ORCID: https://orcid.org/0000-0003-4587-8952
Sergey V. Tretyakov1,3, Doctor of Agriculture, Prof.; ResearcherID: AAE-3861-2021, ORCID: https://orcid.org/0000-0001-5982-3114
Ilya V. Tsvetkov1,3, Candidate of Agriculture; ResearcherID: AAY-6441-2021, ORCID: https://orcid.org/0000-0002-1559-3254
Ivan S. Tsepordey4, Candidate of Agriculture, Research Scientist; ResearcherID: AAC-5377-2020, ORCID: https://orcid.org/0000-0002-4747-5017

Affiliation

1Northern Research Institute of Forestry, ul. Nikitova, 13, Arkhangelsk, 163062, Russian Federation; vagner93@inbox.rus.v.tretyakov@narfu.rui.tsvetkov@narfu.ru
2Ural State Forest Engineering University, Sibirskiy Trakt, 37, Yekaterinburg, 620100, Russian Federation; Usoltsev50@mail.ru*
3Northern (Arctic) Federal University named after M.V. Lomonosov, Nabereznaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; vagner93@inbox.rus.v.tretyakov@narfu.rui.tsvetkov@narfu.ru
4Botanical Garden of the Ural Branch of the RAS, ul. 8 Marta, 202а, Yekaterinburg, 620144, Russian Federation; Usoltsev50@mail.ru*, ivan.tsepordey@yandex.ru

Keywords

Salix L., stem phytomass, aboveground phytomass, phytomass fractions, generic model, meta-analysis, regression analysis

For citation

Paramonov А.А., Usoltsev V.А., Tretyakov S.V., Tsvetkov I.V., Tsepordey I.S.
Generic Models of Willow (genus Salix L.) Tree Phytomass: a Meta-Analysis. Lesnoy Zhurnal = Russian Forestry Journal, 2024, no. 5, pp. 64–75. (In Russ.). https://doi.org/10.37482/0536-1036-2024-5-64-75

References

  1. Antsiferov G.I. Willow. Moscow, Lesnaya promyshlennost’ Publ., 1984. 101 p. (In Russ.).

  2. Gusev I.I. Ecosystem Modeling. Arkhangelsk, ASTU Publ., 2002. 112 p. (In Russ.).

  3. Pristova T.A. Carbon Reserves in Woody Plants of Birch-Spruce Young Stock of Post-Harvest Origin of the Middle Taiga of the Komi Republic. Trudy Sankt-Peterburgskogo nauchno-issledovatelskogo instituta lesnogo khozyajstva = Proceedings of the Saint Petersburg Forestry Research Institute, 2022, no. 1, pp. 72–82. (In Russ.). https://doi.org/10.21178/2079-6080.2022.1.72

  4. Smirnov V.V. Organic Mass in Some Forest Phytocenoses of the European Part of the USSR. Moscow, Nauka Publ., 1971. 359 p. (In Russ.).

  5. Usoltsev V.А., Paramonov А.А., Tretyakov S.V., Koptev S.V., Tsepordey I.S. Generic Model of Willow Stem Volume: A Meta-Analysis. Lesnoy Zhurnal = Russian Forestry Journal, 2021, no. 3, pp. 49–58. (In Russ.). https://doi.org/10.37482/0536-1036-2021-3-49-58

  6. Usoltsev V.A., Urazova A.F., Bornikov A.V., Tsepordey I.S. Species-Specific Allometry and a Generic Model of the Aboveground Biomass Structure of the Genus Prunus L.: a Meta-Analysis. Lesa Rossii i khozyajstvo v nikh = Forests of Russia and Economy in Them, 2019, no. 3 (70), pp. 4–15. (In Russ.).

  7. Usoltsev V.А., Tsepordey I.S., Azarenok V.A., Kokh E.V. Generic Allometric Models of Understory Species BioMASS: Meta-Analysis. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Les. Ekologiya. Prirodopol’zovanie = Vestnik of Volga State University of Technology. Series: Forest. Ecology. Nature Management, 2023, no. 1 (57), pp. 5–20. (In Russ.). https://doi.org/10.25686/2306-2827.2023.1.5

  8. Usoltsev V.A., Tsepordey I.S., Paramonov A.A., Tretyakov S.V., Koptev S.V., Karaban A.A., Tsvetkov I.V., Davydov A.V., Chasovskikh V.P. Comparative Meta-Analysis of Allometric Models of Fast-Growing Hardwood Biomass. Biosfera, 2023, vol. 15, no. 1, pp. 7–20. (In Russ.). https://doi.org/10.24855/biosfera.v15i1.789

  9. Usoltsev V.A., Tsepordey I.S., Chasovskikh V.P. Generic Models of Birch (Genus Betula L.) Tree Biomass: a Meta-Analysis. Trudy Sankt-Peterburgskogo nauchno-issledovatelskogo instituta lesnogo khozyajstva = Proceedings of the Saint Petersburg Forestry Research Institute, 2023, no. 4, pp. 4–15. (In Russ.). https://doi.org/10.21178/2079-6080.2023.4.4

  10. Chetyrkin E.M. Statistical Methods of Forecasting. Moscow, Statistika Publ., 1977. 200 p. (In Russ.).

  11. Arevalo C.B.M., Volk T.A., Bevilacqua E., Abrahamson L. Development and Validation of Aboveground Biomass Estimations for Four Salix Clones in Central New York. Biomass and Bioenergy, 2007, vol. 31, iss. 1, pp. 1–12. https://doi.org/10.1016/j.biombioe.2006.06.012

  12. Blujdea V.B.N., Pilli R., Dutca I., Ciuvat L., Abrudan I.V. Allometric Biomass Equations for Young Broadleaved Trees in Plantations in Romania. Forest Ecology and Management, 2012, vol. 264, pp. 172–184. https://doi.org/10.1016/j.foreco.2011.09.042

  13. Chave J., Réjou-Méchain M., Búrquez A., Chidumayo E., Colgan M.S., Delitti W.B.C., Duque A., Eid T., Fearnside P.M., Goodman R.C., Henry M., Martínez-Yrízar A., Mugasha W.A., Muller-Landau H.C., Mencuccini M., Nelson B.W., Ngomanda A., Nogueira E.M., Ortiz-Malavassi E., Pélissier R., Ploton P., Ryan C.M., Saldarriaga J.G., Vieilledent G. Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Global Change Biology, 2014, vol. 20, iss. 10, pp. 3177–3190. https://doi.org/10.1111/gcb.12629

  14. Chen J., Fang X., Wu A., Xiang W., Lei P., Ouyang S. Allometric Equations for Estimating Biomass of Natural Shrubs and Young Trees of Subtropical Forests. New Forests, 2024, vol. 55, pp.15–46. https://doi.org/10.1007/s11056-023-09963-z

  15. Chojnacky D.C., Heath L.S., Jenkins J.C. Updated Generalized Biomass Equations for North American Tree Species. Forestry, 2014, vol. 87, iss. 1, pp. 129–151. https://doi.org/10.1093/forestry/cpt053

  16. Conti G., Gorné L.D., Zeballos S.R., Lipoma M.L., Gatica G., Kowaljow E., Whitworth-Hulse J.I., Cuchietti A., Poca M., Pestoni S., Fernandes P.M. Developing Allometric Models to Predict the Individual Aboveground Biomass of Shrubs Worldwide. Global Ecology and Biogeography, 2019, vol. 28, iss. 7, pp. 961–975. https://doi.org/10.1111/geb.12907

  17. Dahal B., Poudel K.P., Renninger H.J., Granger J.J., Leininger T.D., Gardiner E.S., Souter R.A., Rousseau R.J. Aboveground Biomass Equations for Black Willow (Salix nigra Marsh.) and Eastern Cottonwood (Populus deltoides Bartr. ex Marsh.). Trees, Forests and People, 2022, vol. 7, art. no. 100195. https://doi.org/10.1016/j.tfp.2022.100195

  18. Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R.A. National-Scale Biomass Estimators for United States Tree Species. Forest Science, 2003, vol. 49, iss. 1, pp. 12–35. https://doi.org/10.1093/forestscience/49.1.12

  19. Marchetti M. Forest Biomass for Bioenergy: Opportunities and Constraints for Governance Context. Forest Biomass Conference 2013, 2013, pp. 37–38.

  20. Mleczek M., Rutkowski P., Rissmann I., Kaczmarek Z., Golinski P., Szentner K., Strazyńska K., Stachowiak A. Biomass Productivity and Phytoremediation Potential of Salix alba and Salix viminalis. Biomass and Bioenergy, 2010, vol. 34, iss. 9, pp. 1410–1418. https://doi.org/10.1016/j.biombioe.2010.04.012

  21. Mund M., Kummetz E., Hein M., Bauer G.A., Schulze E.-D. Growth and Carbon Stocks of a Spruce Forest Chronosequence in Central Europe. Forest Ecology and Management, 2002, vol. 171, iss. 3, pp. 275–296. https://doi.org/10.1016/S0378-1127(01)00788-5

  22. Muukkonen Р. Generalized Allometric Volume and Biomass Equations for Some Tree Species in Europe. European Journal of Forest Research, 2007, vol. 126, pp. 157–166. https://doi.org/10.1007/s10342-007-0168-4

  23. Pajtík J., Konôpka B., Šebeň V. Mathematical Biomass Models for Young Individuals of Forest Tree Species in the Region of the Western Carpathians. Zvolen, National Forest Centre – Forest Research Institute Zvolen, 2018. 89 p.

  24. Pastor J., Aber J.D., Melillo J.M. Biomass Prediction Using Generalized Allometric Regressions for Some Northeast Tree Species. Forest Ecology and Management, 1984, vol. 7, iss. 4, pp. 265–274. https://doi.org/10.1016/0378-1127(84)90003-3

  25. Paul K.I., Roxburgh S.H., England J.R., Ritson P., Hobbs T., Brooksbank K., Raison R.J., Larmour J.S., Murphy S., Norris J., Neumann C., Lewis T., Jonson J., Carter J.L., McArthur G., Barton C., Rose B. Development and Testing of Allometric Equations for Estimating Aboveground Biomass of Mixed-Species Environmental Plantings. Forest Ecology and Management, 2013, vol. 310, pp. 483–494. https://doi.org/10.1016/j.foreco.2013.08.054

  26. Perala D.A., Alban D. Allometric Biomass Estimators for Aspen-Dominated Ecosystems in the Upper Great Lakes. Research Paper NC-314. St. Paul, MN, US Department of Agriculture, Forest Service, North Central Forest Experiment Station, 1993. 38 p. https://doi.org/10.2737/NC-RP-314

  27. Ribe J.H. Puckerbrush Weight Tables. Miscellaneous Report 152. Orono, ME, University of Maine, Life Sciences and Agriculture Experiment Station, 1973. 92 p.

  28. Urban D.L., Acevedo M.F., Garman S.L. Scaling Fine-Scale Processes to Large-Scale Patterns Using Models Derived from Models: Meta-Models. Spatial Modeling of Forest Landscape Change: Approaches and Applications, 1999, chapt. 4, pp. 70–98.

  29. Volk T.A., Luzadis V. Willow Biomass Production for Bioenergy, Biofuels and Bioproducts in New York. Renewable Energy from Forest Resources in the United States, 2009, pp. 238–260. https://doi.org/10.4324/9780203888421-22

  30. West G.B., Brown J.H., Enguist B.J. A General Model for the Structure and Allometry of Plant Vascular System. Nature, 1999, vol. 400, pp. 664–667. https://doi.org/10.1038/23251

  31. Wilkinson A.G. Poplars and Willows for Soil Erosion Control in New Zealand. Biomass and Bioenergy, 1999, vol. 16, iss. 4, pp. 263–274. https://doi.org/10.1016/S0961-9534(99)00007-0

  32. Yang T.H., Song K., Da L.J., Li X.P., Wu J.P. The Biomass and AboveGround Net Primary Productivity of Schima superba-Castanopsis carlesii Forests in East China. Science China Life Sciences, 2010, vol. 53, pp. 811–821. https://doi.org/10.1007/s11427-010-4021-5

  33. Young H.E., Ribe J.H., Wainwright K. MR 230: Weight Tables for Tree and Shrub Species in Maine. Life Sciences & Agriculture Experiment Station Miscellaneous Report 230, 1980. 84 p.

  34. Zianis D., Mencuccini M. On Simplifying Allometric Analyses of Forest Biomass. Forest Ecology and Management, 2004, vol. 187, iss. 2–3, pp. 311–332. https://doi.org/10.1016/j.foreco.2003.07.007



 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png