Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

Peculiarities of the Accumulation of Mineral Elements and Nitrogen in the Assimilation Apparatus of Scots Pine. C. 118-129

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

Pavel A. Feklistov, Olga N. Tyukavina, Nataliya R. Sungurova, Sergey S. Makarov, Ivan N. Bolotov, Sergey N. Tarkhanov

Complete text of the article:

Download article (pdf, 0.9MB )

UDС

630*581.192

DOI:

10.37482/0536-1036-2024-3-118-129

Abstract

The research has been carried out in the Arkhangelsk forestry of the Arkhangelsk Region in a drained shrub-sphagnum pine forest. Census trees of medium diameter and height for the stand have been selected, from which samples of needles, both living and dying yellow ones, and shoots of different ages have been taken on model branches. Soil samples have also been taken from the 3 upper horizons. It has been established that most of all nitrogen and mineral elements accumulate in the living needles – 4.4 % on average, in the dying needles and shoots there are 37–40 % less. Among all the elements, nitrogen, potassium and calcium make up the largest proportion; while the rest of the chemical elements are several time less. In descending order of the share, they are arranged in the following sequence: magnesium, sulfur, phosphorus, manganese, silicon, iron and aluminum. The most important mineral elements are derived in significant quantities from the dying yellow needles. The content of sulfur, magnesium, phosphorus, manganese and iron decreases in them by 3.3, 2.1, 8.0, 1.5 and 1.4 times, respectively, compared to the living needles. Data on the presence of nitrogen and mineral elements in the soil horizons A0, T1 and T2 have been obtained. It has been established that some of the essential elements for the life of a tree are concentrated in the living needles in much larger quantities than in the soil: potassium, phosphorus, manganese and calcium – by 12.0, 4.0, 6.0 and 1.9, respectively. The yellow falling needles create a biological cycle of substances. The amount of nitrogen and ash constituents in these needles is proportional to their presence in the soil. In turn, the content of mineral elements in the shoots is close to their amount in the yellow falling needles, on the one hand, and on the other, depends on the age of the shoots. There is a steady trend of decreasing the content of nitrogen, potassium, phosphorus and sulfur with the age of the shoots.

Authors

Pavel A. Feklistov1*, Doctor of Agriculture, Prof.; ResearcherID: AAC-2377-2020, ORCID: https://orcid.org/0000-0001-8226-893X
Olga N. Tyukavina2, Doctor of Agriculture, Assoc. Prof.; ResearcherID: H-2336-2019, ORCID: https://orcid.org/0000-0003-4024-6833
Nataliya R. Sungurova2, Doctor of Agriculture, Assoc. Prof.; ResearcherID: H-1847-2019, ORCID: https://orcid.org/0000-0002-8464-4596
Sergey S. Makarov3, Doctor of Agriculture; ResearcherID: AAK-9829-2021, ORCID: https://orcid.org/0000-0003-0564-8888
Ivan N. Bolotov1, Doctor of Biology, Director; ResearcherID: P-2892-2015, ORCID: https://orcid.org/0000-0002-3878-4192
Sergey N. Tarkhanov1, Doctor of Biology, Senior Research Scientist; ResearcherID: ABG-7237-2020, ORCID: https://orcid.org/0000-0001-9037-8995

Affiliation

1Federal Research Center for the Integrated Study of the Arctic named after Academician N.P. Laverov of the Ural Branch of the Russian Academy of Sciences, Naberezhnaya Severnoy Dviny, 23, Arkhangelsk, 163000, Russian Federation; pfeklistov@yandex.ru*, dirnauka@fciarctic.rutarkse@yandex.ru
2Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; o.tukavina@narfu.run.sungurova@narfu.ru
3Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, ul. Timiryazevskaya, 49, Moscow, 127550, Russian Federation; s.makarov@rgau-msha.ru

Keywords

pine, mineral elements, nitrogen, accumulation of mineral elements, needles, shoots

For citation

Feklistov P.A., Tyukavina O.N., Sungurova N.R., Makarov S.S., Bolotov I.N., Tarkhanov S.N. Peculiarities of the Accumulation of Mineral Elements and Nitrogen in the Assimilation Apparatus of Scots Pine. Lesnoy Zhurnal = Russian Forestry Journal, 2024, no. 3, pp. 118–129. (In Russ.). https://doi.org/10.37482/0536-1036-2024-3-118-129

References

  1. Besschetnova N.N. Scots Pine (Pinus sylvestris L.). Reproductive Potential of Plus Trees. Nizhniy Novgorod, Nizhny Novgorod State Agricultural Academy Publ., 2015. 586 р. (In Russ.).
  2. Bobkova K.S. Ecological Basis of Coniferous Forests Productivity of the European North-East: Doct. Biol. Sci. Diss. Abs. Krasnoyarsk, 1990. 35 p. (In Russ.).
  3. Bobkova K.S., Tuzhilkina V.V., Sen’kina S.N., Galenko E.P., Zagirova S.V. Ecological and Physiological Basis of Productivity of Pine Forests of the European Northeast. Syktyvkar: Komi Scientific Center of Ural Branch of the RAS, 1993. 176 p. (In Russ.).
  4. Veretennikov A.V. Plant Physiology with the Basics of Biochemistry. Voronezh, Voronezh State University Publ., 1987. 254 p. (In Russ.).
  5. Ivonis I.Yu. Growth Regulators in Microstrobilli of Coniferous Species of Karelia. Meeting on Forest Genetics, Breeding and Seed Production: Abstracts. Petrozavodsk, 1967, pp. 57–59. (In Russ.).
  6. Kazimirov N.I., Volkov A.D., Zyabchenko S.S., Ivanchikov A.A., Morozova R.M. Metabolism and Energy Change in Pine Forests of the European North. Leningrad, Nauka Publ. (Leningrad Branch), 1977. 304 p. (In Russ.).
  7. Kramer P.D., Kozlovskiy T.T. Physiology of Woody Plants. Moscow, Lesnaya promyshlennost’ Publ., 1983. 464 p. (In Russ.).
  8. Kuznetsov V.V., Dmitrieva G.A. Plant Physiology. Moscow, Abris Publ., 2011. 783 p. (In Russ.).
  9. Libbert E. Plant Physiology. Moscow, Mir Publ., 1976. 582 р. (In Russ.).
  10. Likhanova N.V. The Effect of Continuous Logging on the Circulation of Nitrogen and Ash Consituents in the Spruce Forests of the Middle Taiga: Cand. Biol. Sci. Diss. Abs. Syktyvkar, 2015. 22 p. (In Russ.).
  11. Pristova T.A. Biological Сycle of Nitrogen and Ash Constituents in Deciduous-Coniferous Plantations of the Middle Taiga Subzone: Cand. Biol. Sci. Diss. Abs. Syktyvkar, 2003. 19 p. (In Russ.).
  12. Tarkhanov S.N. The Content of Sulfur and Heavy Metals in Soils and Needles of Coniferous Stands under Aerotechnogenic Pollution in the Severnaya Dvina River Basin. Lesovedenie = Russian Journal of Forest Science, 2011, no. 3, pp. 26–33. (In Russ.).
  13. Feklistov P.A., Khabarova E.P. Assimilation Apparatus of Pine Trees on Drained and Overly Moistened Soils. Arkhangelsk, Northern Arctic Federal University Publ., 2017. 141 p. (In Russ.).
  14. Codesido V., Fernandes-Lopes J. Using SYNCHRO SAS, a Program to Facilitate Phenological Data Processing in a Radiate Pine Seed Orchard in Northern Spain. Seed Orchards: Proceedings from a Conference at Umea, Sveden. Sweden, Uppsala, SLU/Publikationsjanst Publ., 2008, pp. 43–49. https://doi.org/10.13140/2.1.4524.6088
  15. Conn S., Gilliham M. Comparative Physiology of Elemental Distributions in Plants. Annals of Botany, 2010, vol. 105, iss. 7, pp. 1081–1102. https://doi.org/10.1093/aob/mcq027
  16. Kurm M., Kängsepp L., Kiviste A., Sims A., Maaten T., Kaljurand H. Hariliku Männi (Pinus sylvestris L.) Plusspuud Eestis = Scots pine (Pinus sylvestris L.) Plus Trees in Estonias. Forestry studies. Metsanduslicud Uurimused, 2007, vol. 46, pp. 57–76. (In Est.).
  17. Kurt Y., Bilgen B.B., Kaya N., Isik K. Genetis Comparison of Pinus brutia Ten. Populations from Different Elevations by RAPD Markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, vol. 39, no. 2, pp. 299–304. https://doi.org/10.15835/nbha3926276
  18. Pongrac P., Baltrenaite E., Vavpetič P., Kelemen M., Kladnik A., Budič B., Vogel-Mikuš K., Regvar M., Baltrenas P., Pelicon P. Tissue-Specific Element Profiles in Scots Pine (Pinus sylvestris L.) Needles. Trees, 2019, vol. 33, pp. 91–101. https://doi.org/10.1007/s00468-018-1761-5
  19. Rautio P., Huttunen S. Total vs. Internal Element Concentrations in Scots Pine Needles along a Sulphur and Metal Pollution Gradient. Environmental Pollution, 2003, vol. 122, pp. 273–289. https://doi.org/10.1016/S0269-7491(02)00289-0
  20. Silva da J.M., Aguiar A.V., Mori E.S., Moraes de M.L.T. Variação Genética e Ganho Esperado na Seleção de Progênies de Pinus caribaea var. caribaea em Selvíria, MS = Genetic Variation and Expected Gain in Selection of Pinus caribaea Morelet var. caribaea Progenies in Selviria, MS. Scienta Forestalis, Piracicaba, 2011, vol. 39, no. 90, pp. 241–252. (In Port.).
  21. Tian X., Minunno F., Schiestl-Aalto P., Chi J., Zhao P., Peichl M., Marshall J., Näsholm T., Lim H., Peltoniemi M., Linder S., Mäkelä A. Disaggregating the Effects of Nitrogen Addition on Gross Primary Production in a Boreal Scots Pine Forest. Agricultural and Forest Meteorology, 2021, vol. 301–302, art. no. 108337. https://doi.org/10.1016/j.agrformet.2021.108337
  22. Zeiner M., Kuhar A., Juranović Cindrić I. Geographic Differences in Element Accumulation in Needles of Aleppo Pines (Pinus halepensis Mill.) Grown in Mediterranean Region. Molecules, 2019, vol. 24, no. 10, art. no. 1877. https://doi.org/10.3390/molecules24101877


 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png