Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

Relative Tree Height in Isolated Populations of Pine Stands. C. 102-113

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

A.N. Sobolev, P.A. Feklistov, N.A. Neverov, S.S. Makarov

Complete text of the article:

Download article (pdf, 0.6MB )

UDС

630*5

DOI:

10.37482/0536-1036-2023-6-102-113

Abstract

The study of relative tree height in lingonberry, bilberry and sphagnum pine forests on Bolshoy Solovetsky Island was carried out. The island is the largest by area in the Solovetsky Archipelago and in the White Sea. The archipelago is a UNESCO World Heritage Site. Relative height is an important indicator characterizing the growth of woody plants and reflecting how many centimeters of height growth for each centimeter of diameter. We laid 34 sample plots in the most widespread forest types – lingonberry, bilberry, and sphagnum pine forests, occupying 82.0 % of the total pine forest area. At each sampling area we selected survey trees (64 trees each), measured heights, diameters, and took cores with an age drill at the root neck to determine the age. A total of 2176 trees were used in the relative height analysis. The average relative height in lingonberry, bilberry and sphagnum pine forests on Bolshoy Solovetsky Island is 62.5; 61.5 and 54.7 cm/cm, respectively. This relative height is noticeably lower than in pine forests on the mainland in the Arkhangelsk Oblast. There, the values are 84.9; 84.9 and 79.2 cm/cm for the respective forest types. It is not possible to use the existing growth progress tables developed on the basis of mainland trees for island pine forests. Equations for determining the relative height of pine forests on Bolshoy Solovetsky Island were obtained. It is proposed to use tree diameter rather than age as an input parameter, since the determination of age is much more difficult than that of diameter at breast height.

Authors

Aleksandr N. Sobolev1, Candidate of Agriculture, Senior Research Scientist; ResearcherID: AAS-3366-2020, ORCID: https://orcid.org/0000-0002-7961-8318
Pavel A. Feklistov2*, Doctor of Agriculture, Prof.; ResearcherID: AAC-2377-2020, ORCID: https://orcid.org/0000-0001-8226-893X
Nikolay A. Neverov2, Candidate of Agriculture, Senior Research Scientist; ResearcherID: P-5590-2015, ORCID: https://orcid.org/0000-0002-0161-0738
Sergey S. Makarov3, Doctor of Agriculture; ResearcherID: ААК-9829-2021, ORCID: https://orcid.org/0000-0003-0564-8888

Affiliation

1Solovki State Historical, Architectural and Natural Museum-Reserve, Solovetsky settlement, Arkhangelsk region, 164070, Russian Federation; alex-sobol@mail.ru
2Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences named after N.P. Laverov, Naberezhnaya Severnoy Dviny, 109, Arkhangelsk, 163000, Russian Federation; pfeklistov@yandex.ru*, na-neverov@yandex.ru
3Moscow Timiryazev Agricultural Academy, ul. Timiryazevskaya, 49, Moscow, 127434, Russian Federation; s.makarov@rgau-msha.ru

Keywords

relative tree height, pine forests, Bolshoy Solovetsky Island, tree diameter, tree height, forest type, tree age

For citation

Sobolev A.N., Feklistov P.A., Neverov N.A., Makarov S.S. Relative Tree Height in Isolated Populations of Pine Stands. Lesnoy Zhurnal = Russian Forestry Journal, 2023, no. 6, pp. 102–113. (In Russ.). https://doi.org/10.37482/0536-1036-2023-6-102-113

References

  1. Anuchin N.P. Forest Taxation. Moscow, Lesnaya promyshlennost' Publ., 1982. 552 p. (In Russ.).
  2. Bondarenko A.S., Zhigunov A.V. Statistical Processing of Forest Research Materials. Saint-Petersburg, SPbPU Publ., 2016. 125 p. (In Russ.).
  3. Burova N.V., Feklistov P.A. Anthropogenic Transformation of Suburban Forests. Arkhangelsk, ASTU Publ., 2007. 264 p. (In Russ.).
  4. Verhunov P.M. Regularities of the Structure of Pine Forests of Different Ages. Novosibirsk, Nauka Publ., 1976. 255 p. (In Russ.).
  5. Vysotsky K.K. Regularities of the Structure of Mixed Stands. Moscow, Goslesbumizdat Publ., 1962. 177 p. (In Russ.).
  6. Ipatov L.F., Kosarev V.P., Prourzin L.I., Torkhov S.V. Solovetsky Forest. Arkhangelsk, 2005. 225 p. (In Russ.).
  7. Komin G.E. On the Question of the Types of Age Structure of Plantings. Lesnoy Zhurnal = Russian Forestry Journal, 1963, no. 3, pp. 37–42. (In Russ.).
  8. Komin G.E. Age Structure of Stands in the Forests of Russia. Sochi, FSU Niigorlesekol Publ., 2003. 219 p. (In Russ.).
  9. Maslakov E.L. Formation of Young Pine Trees. Moscow, Lesnaya promyshlennost’ Publ., 1984. 165 p. (In Russ.).
  10. Melekhov I.S. Forestry. Moscow, Lesnaya promyshlennost’ Publ., 1980. 408 p. (In Russ.).
  11. Nasledov A. SPSS 19: Professional Statistical Data Analysis. Saint Petersburg, Piter Publ., 2011. 400 p. (In Russ.).
  12. Nagimov V.Z., Artemyeva I.N., Nagimov Z.Ya. Differentiation and Decline of Trees in Lichen-Bearing Pine Forests of the Siberian Uvaly Nature Reserve Park. Forests of Russia and Economy in Them, 2007, vol. 1, iss. 29, pp.138–146. (In Russ.).
  13. Tretyakov S.V., Yaroslavtsev S.V., Koptev S.V. Field Forest Taxing Reference Book. Arkhangelsk, NARFU Publ., 2016. 252 p. (In Russ.).
  14. Shvartsman Yu.G., Bolotov I.N. Natural Environment of the Solovetsky Archipelago in a Changing Climate. Yekaterinburg, Ural Branch of the Russian Academy of Sciences Publ., 2007. 184 p. (In Russ.).
  15. Dylis N.V. Program and Methodology of Biogeocenological Research. Moscow, Nauka Publ., 1966. 332 p. (In Russ.).
  16. Sobolev A.N., Feklistov P.A. Features of the Structure of Pine Stands on Bolshoy Solovetsky Island. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 1, pp. 77–87. (In Russ.). https://doi.org/10.37482/0536-1036-2022-1-77-87
  17. Feklistov P.A., Evdokimov V.N., Evdokimova E.V., Fedyaev A.L., Samylov D.E., Zubakha S.I. Features of Pine Forests of the Forest Park " Yagry". Bulletin of the Pomor University. Series: Natural Sciences, 2011, no. 1, pp. 89–95. (In Russ.).
  18. Feklistov P.A., Sobolev A.N. Forest Plantations of the Solovetsky Archipelago (Structure, Condition, Growth). Arkhangelsk, NArFU Publ., 2010. 240 p. (In Russ.).
  19. Yuknis R.A. Some Patterns of Tree Growth. Modeling and Control of Stand Productivity. Kaunas, VMU Agriculture Academy Publ., 1983, pp. 118–120. (In Russ.).
  20. Bohora S.B., Cao Q.V. Prediction of Tree Diameter Growth Using Quantile Regression and Mixed-Effects Models. Forest Ecology and Management, 2014, vol. 319, pp. 62–66. https://doi.org/10.1016/j.foreco.2014.02.006
  21. Bronisz K., Mehtätalo L. Mixed-Effects Generalized Height–Diameter Model for Young Silver Birch Stands on Post-Agricultural Lands. Forest Ecology and Management, 2020, vol. 460, art. 117901. https://doi.org/10.1016/j.foreco.2020.117901
  22. Chenge Iveren B. Height–Diameter Relationship of Trees in Omo Strict Nature Forest Reserve, Nigeria. Trees, Forests and People, 2021, vol. 3, art. 100051. https://doi.org/10.1016/j.tfp.2020.100051
  23. Cysneiros V.C., Pelissari A.L., Gaui T.D., Fiorentin L.D., Daniel C.C., Telmo B.S.F., Sebastião A.M. Modeling of Tree Height–Diameter Relationships in the Atlantic Forest: Effect of Forest Type on Tree Allometry. Canadian Journal of Forest Research, 2020, vol. 50, no. 12, pp. 1289–1298. https://doi.org/10.1139/cjfr-2020-0060
  24. Erteld W. Groesse und Entwicklung des h/d-Wertes in Kieferbestaenden. Allgemeine Forstund Jagdzeitung, 1979, jg. 150, s. 72–75. (In Germ.).
  25. Meng Shawn X., Shongming H., Lieffers V.J., Thompson N., Yuqing Y. Wind Speed and Crown Class Influence the Height–Diameter Relationship of Lodgepole Pine: Nonlinear Mixed Effects Modeling. Forest Ecology and Management, 2008, vol. 256, iss. 4, pp. 570–577. https://doi.org/10.1016/j.foreco.2008.05.002
  26. Mensah S., Pienaar O.L., Kunneke A., Du Toit B., Seydack A., Uhl E., Pretzsch H., Seifert T., Height – Diameter Allometry in South Africa’s Indigenous High Forests: Assessing Generic Models Performance and Function Forms. Forest Ecology and Management, 2018, vol. 410, pp. 1–11. https://doi.org/10.1016/j.foreco.2017.12.030
  27. Ng'andwe P., Chungu D., Yambayamba A.M., Chilambwe A. Modeling the HeightDiameter Relationship of Planted Pinus Kesiya in Zambia. Forest Ecology and Management, 2019, vol. 447, pp. 1–11. https://doi.org/10.1016/j.foreco.2019.05.051
  28. Rust S. Analysis of Regional Variation of Height Growth and Slenderness in Populations of Six Urban Tree Species using a Quantile Regression Approach. Urban Forestry & Urban Greening, 2014, vol. 13, iss. 2, pp. 336–343. https://doi.org/10.1016/j.ufug.2013.12.003
  29. Sharma M., Subedi N., Ter-Mikaelian M., Parton J. Modeling Climatic Effects on Stand Height/Site Index of Plantation-Grown Jack Pine and Black Spruce Trees. Forest Science, 2015, vol. 61, iss. 1, pp. 25–34. https://doi.org/10.5849/forsci.13-190
  30. Thomasius H.O., Butter D. Studie zu einigen Relationen zwischen Wuchsflaeche, Zuwachs und individueller Stabilitaet von Waldbaeumen, dargestellt an der Baumart Fichte. Beitraege f. d. Forstwirtschaft, 18, 1984, H. l. S. 25–28. (In Germ.).
  31. Watt M.S., Kirschbaum M.U.F. Moving Beyond Simple Linear Allometric Relationships Between Tree Height, and Diameter. Ecological Modelling, 2011, vol. 222, iss. 23–24, pp. 3910–3916. https://doi.org/10.1016/j.ecolmodel.2011.10.011
  32. Zheng J., Zang H., Yin S., Sun N., Zhu P., Han Y., Kang H., Liu C. Modeling Height-Diameter Relationship for Artificial Monoculture Metasequoia Glyptostroboides in Sub-Tropic Coastal Megacity Shanghai, China. Urban Forestry & Urban Greening, 2018, vol. 34, pp. 226–232. https://doi.org/10.1016/j.ufug.2018.06.006


 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png