Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

Experimental Studies of the Thermal Regime in the Pavement Layers of Long-Distance Forest Roads

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

A.M. Borgonutdinov, S.E. Rudov, I.V. Grigorev, D.S. Efimov, V.V. Shvetsova

Complete text of the article:

Download article (pdf, 1.9MB )

UDС

625.852

DOI:

10.37482/0536-1036-2022-2-146-158

Abstract

Economic and social development of both the country as a whole and its individual regions is impossible without maintaining the required level of development and technical condition of the road network. This also applies directly to agricultural producers. Despite the fact that considerable funds are allocated for the construction and repair of roads, the service life of roads often does not meet the standard values. One of the reasons for the low service life of road structures are design errors related to the lack of data on the thermal conductivity of road construction materials, seasonal freezing of the roadbed, which together with unsatisfactory soil and hydrological conditions contribute to significant deformations. One of the main problems in the road industry at present is insufficient consideration of soil and hydrological conditions of the area, which are estimated approximately from topographic maps and materials of old documents or, at best, from the results of reconnaissance surveys. At the same time, it is often difficult to provide the required load-bearing capacity and frost resistance of road structures with an unsuccessfully selected, even short route, since when designing the roadbed, soil and hydrological conditions are secondary, and the choice of the route location is primary. It is well known effect when periodic freezing and thawing of the road surface leads to the appearance of alternating stresses, which significantly accelerate the destruction of the road surface and sometimes the foundation. A thorough understanding of the processes of freezing and thawing of the roadbed makes it possible to avoid design errors, and the significant financial losses associated with them, in the construction of long-distance forest roads. The article presents the features of processes occurring in the layers of road construction during seasonal freezing. Hypotheses about the processes of moisture migration in seasonally frozen soils, the influence of heat capacity and thermal conductivity of road construction materials on the course of these processes, as well as methods for modeling processes occurring in road structures under the influence of natural and climatic conditions are considered, and the results of the field experimental studies are presented.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license • The authors declare that there is no conflict of interest

Authors

Albert M. Borgonutdinov1, Doctor of Engineering, Prof.; ORCID: https://orcid.org/0000-0002-7489-791X
Sergey E. Rudov2, Candidate of Engineering; ResearcherID: AAC-9563-2020, ORCID: https://orcid.org/0000-0002-9900-0929
Igor V. Grigorev3, Doctor of Engineering, Prof.; ResearcherID: S-7085-2016, ORCID: https://orcid.org/0000-0002-5574-1725
Denis S. Efimov4, Candidate of Engineering, Assoc. Prof.; ORCID: https://orcid.org/0000-0001-5684-9968

Affiliation

1Perm National Research Polytechnic University, Komsomol’skiy prosp., 29, Perm, 614990, Russian Federation; е-mail: burgonutdinov.albert@yandex.ru
2Military Academy of Communications named after Marshal of the Soviet Union S.M. Budyonny, Tikhoretskiy prosp., 3, K-64, Saint Petersburg, 194064, Russian Federation; e-mail: 89213093250@mail.ru
3Arctic State Agrotechnological University, sh. Sergelyakhskoye, 3-y km, 3, Yakutsk, 677007, Russian Federation; e-mail: silver73@inbox.ru
4Novocherkassk Engineering and Reclamation Institute named after A.K. Kortunov, ul. Pushkinskaya, 111, Novocherkassk, 346428, Russian Federation; e-mail: efimow.denis809@yandex.ru
5Saint Petersburg State University of Architecture and Civil Engineering, 2-ya Krasnoarmeyskaya ul., 4, Saint-Petersburg, 190005, Russian Federation; e-mail: viktoria.shvetsova20@mail.ru

Keywords

long-distance forest roads, water and heat regime, forest roads, road structure, seasonal freezing, freezing zone, moisture sources, moisture migration, temperature sensors

Funding

The research was carried out within the framework of the grant of the Russian Science Foundation No. 22-26-00009, https://rscf.ru/project/22-26-00009/

For citation

Borgonutdinov A.M., Rudov S.E., Grigorev I.V., Efimov D.S., Shvetsova V.V. Experimental Studies of the Thermal Regime in the Pavement Layers of Long-Distance Forest Roads. Lesnoy Zhurnal [Russian Forestry Journal], 2022, no. 2, pp. 146–158. DOI: 10.37482/0536-1036-2022-2-146-158

References

1. Ефименко С.В. Обоснование расчетных значений характеристик глинистых грунтов для проектирования дорожных одежд автомобильных дорог (на примере районов Западной Сибири): автореф. дис. … канд. техн. наук. Омск, 2006. 22 с. Efimenko S.V. Justification of the Calculated Values of the Characteristics of Clay Soils for the Design of Road Surfaces of Highways (Case Study of the Regions of Western Siberia): Cand. Eng. Sci. Diss. Abs. Omsk, 2006. 22 p.

2. Золотарь И.А. Теоретические основы применения тонкодисперсных грунтов для возведения земляного полотна автомобильных дорог в северных районах области многолетнемерзлых грунтов: моногр. М.: Транспорт, 1988. 134 с. Zolotar’ I.A. Theoretical Background of the Use of Fine Dispersed Soils for the Construction of the Roadbed in the Northern Areas of the Region of Permafrost Soils: Monograph. Moscow, Transport Publ., 1988. 134 p.

3. Иванов Д.В., Зарапин Ю.А. Методы регулирования водно-теплового режима земляного полотна автомобильных дорог // Проблемы техногенной безопасности и устойчивого развития. Тамбов: ТГТУ . 2011. Вып. II. С. 255–259. Ivanov D.V., Zarapin Yu.A. Methods for Regulating the Water and Heat Regime of the Roadbed. Problems of Technogenic Safety and Sustainable Development. Tambov, TSTU Publ., 2011, iss. II, pp. 255–259.

4. Корсунский М.Б., Россовский П.Д., Волчанский Г.В. Регулирование водно-теплового режима земляного полотна автомобильных дорог в районах сезонного промерзания // Тр. СоюзДорНИИ . 1966. Вып. 13. С. 14–28. Korsunskiy M.B., Rossovskiy P.D., Volchanskiy G.V. Regulation of the Water and Heat Regime of the Roadbed in Areas of Seasonal Freezing. Trudy SoyuzDorNII, 1966, iss. 13, pp. 14–28.

5. Кулижников А.М. Комплексное проектирование автомобильных дорог на основе пространственного моделирования (на примере Европейского Севера России): автореф. дис. … д-ра техн. наук. М., 1998. 37 с. Kulizhnikov A.M. Complex Design of Roads on the Basis of Spatial Modeling (Case Study of the European North of Russia): Dr. Eng. Sci. Diss. Abs. Moscow, 1998. 37 p.

6. Леонович И.И., Вырко Н.П. Водно-тепловой режим земляного полотна автомобильных дорог. Минск: Белорус. нац. техн. ун-т, 2013. 332 с. Leonovich I.I., Vyrko N.P. Water and Heat Regime of the Roadbed of Highways. Minsk, BNTU Publ., 2013. 332 p.

7. Пузаков Н.А. Водно-тепловой режим земляного полотна автомобильных дорог. М.: Автотрансиздат, 1960. 168 с. Puzakov N.A. Water and Heat Regime of the Roadbed of Highways. Moscow, Avtotransizdat Publ., 1960. 168 p.

8. Рудов С.Е., Шапиро В.Я., Григорьев И.В., Куницкая О.А., Григорьева О.И. Особенности контактного взаимодействия трелевочной системы с мерзлым почвогрунтом // Изв. вузов. Лесн. журн. 2019. № 1. С. 106–119. Rudov S.E., Shapiro B.Ya., Grigor’ev I.V., Kunitskaya O.A., Grigor’eva O.I. Features of Contact Interaction between the Skidding System and Frozen Soils. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 1, pp. 106–119. DOI: https://doi.org/10.17238/issn0536-1036.2019.1.106

9. Рудов С.Е., Шапиро В.Я., Григорьев И.В., Куницкая О.А., Григорьева О.И. Исследование процесса разрушения мерзлых и оттаивающих почвогрунтов при воздействии трелевочной системы // Изв. вузов. Лесн. журн. 2020. № 2. С. 101–117. Rudov S.E., Shapiro V.Ya., Grigorev I.V., Kunitskaya O.A., Grigoreva O.I. The Study of the Destruction Process of Frozen and Thawing Soils Exposed to the Skidding System. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 2, pp. 101–117. DOI: https://doi.org/10.37482/0536-1036-2020-2-101-117

10. Сиденко В.М. Расчет и регулирование водно-теплового режима дорожных одежд и земляного полотна. М.: Автотрансиздат, 1962. 116 с. Sidenko V.M. Calculation and Regulation of the Water and Heat Regime of Road Surfaces and Roadbed. Moscow, Avtotransizdat Publ., 1962. 116 p.

11. Толстенев С.В. Развитие методов прогнозирования и регулирования водно-теплового режима земляного полотна эксплуатируемых автомобильных дорог (на примере Алтайского края): автореф. дис. … канд. техн. наук. Омск, 2002. 18 с. Tolstenev S.V. Development of Methods for Forecasting and Regulating the Water and Heat Regime of the Roadbed of Operated Highways (Case Study of Altai Krai): Cand. Eng. Sci. Diss. Abs. Omsk, 2002. 18 p.

12. Ярмолинский В.А., Лопашук В.В., Лопашук А.В. Регулирование водно-теплового режима автомобильных дорог Камчатского края для повышения их надежности в процессе эксплуатации. Хабаровск: ТО ГУ, 2014. 182 с. Yarmolinsky V.A., Lopashuk V.V., Lopashuk A.V. Regulation of the Water and Heat Regime of Highways of Kamchatka Krai to Increase Their Reliability during Operation. Khabarovsk, PSU Publ., 2014. 182 p.

13. De Jong G., Kouwenhoven M., Bates J., Koster P., Verhoef E., Tavasszy L., Warffemius P. New SP-Values of Time and Reliability for Freight Transport in the Netherlands. Transport Research Part E: Logistics and Transportation Review, 2014, vol. 64, pp. 71–87. DOI: https://doi.org/10.1016/j.tre.2014.01.008

14. Gates J.B., Scanlon B.R., Mu X., Zhang L. Impacts of Soil Conservation on Groundwater Recharge in the Semi-Arid Loess Plateau, Сhina. Hydrogeology Journal, 2011, vol. 19, iss. 4, art. 865. DOI: https://doi.org/10.1007/s10040-011-0716-3

15. Huo S., Jin M., Liang X., Lin D. Changes of Vertical Groundwater Recharge with Increase in Thickness of Vadose Zone Simulated by One-Dimensional Variably Saturated Flow Model. Journal of Earth Science, 2014, vol. 25, iss. 6, pp. 1043–1050. DOI: https://doi.org/10.1007/s12583-014-0486-7

16. Ibrahim M., Favreau G., Scanlon B.R., Seidel J.L., le Coz M., Demarty J., Cappelaere B. Long-Term Increase in Diffuse Groundwater Recharge Following Expansion of Rainfed Cultivation in the Sahel, West Africa. Hydrogeology Journal, 2014, vol. 22, iss. 6, pp. 1293–1305. DOI: https://doi.org/10.1007/s10040-014-1143-z

17. Kouwenhoven M., de Jong G.C., Koster P., van den Berg V.A.C., Verhoef E.T., Bates J., Warffemius P.M.J New Values of Time and Reliability in Passenger Transport in the Netherlands. Research in Transportation Economics, 2014, vol. 47, pp. 37–49. DOI: https://doi.org/10.1016/j.retrec.2014.09.017

18. Kozlov V.G., Skrypnikov A.V., Sushkov S.I., Kruchinin I.N., Grigorev I.V., Nikiforov A.A., Pilnik Y.N., Teppoev A.V., Lavrov M., Timokhova O.M. Enhancing Quality of Road Pavements through Adhesion Improvement. Journal of the Balkan Tribological Association, 2019, vol. 25, no. 3, pp. 678–694.

19. Kurtzman D., Scanlon B.R. Groundwater Recharge through Vertisols: Irrigated Cropland vs. Natural Land, Israel. Vadose Zone Journal, 2011, vol. 10, iss. 2, pp. 662–674. DOI: https://doi.org/10.2136/vzj2010.0109

20. Peer S., Koopmans C.C., Verhoef E.T. Prediction of Travel Time Variability for Cost-Benefit Analysis. Transportation Research Part A: Policy and Practice, 2012, vol. 46, iss. 1, pp. 79–90. DOI: https://doi.org/10.1016/j.tra.2011.09.016



 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png