Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

Sucrose in the Tissues of Annual Shoots of Introduced Woody Plants

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

M.M. Andronova, A.V. Platonov

Complete text of the article:

Download article (pdf, 0.5MB )

UDС

630*161.34+630*164.4+581.134

DOI:

10.37482/0536-1036-2022-1-62-76

Abstract

Expanding the species diversity of urban plantations in the North requires taking into account the physiological characteristics of introduced species. The paper analyzes the winter hardiness and dynamics of sucrose content in tissues of annual shoots of plants growing in towns of the Vologda region, considering their natural habitats. The authors show that the sucrose content in the studied species undergoes seasonal fluctuations and also varies significantly depending on the geographical origin of the species. Most of the studied trees are characterized by a fairly high level of winter hardiness, which occurs against the background of moderate fluctuations in sucrose content throughout the year. Shrubs, compared to trees, are characterized by higher content of sucrose and its significant fluctuations during the growing season. The minimum content of sucrose is observed from April till June in most of the studied plants; during the autumn months its content increases; and then from November to spring there is a decrease. Species that showed a high level of winter hardiness: European spindle (Euonymus europaeus L.), white dogwood (Cornus alba L.), hedge cotoneaster (Cotoneaster lucidus Schltdl.), and Amur maple (Acer ginnala Maxim.). They accumulate sucrose by October and then smoothly consume it during the autumn-winterspring period. Introduced shrubs with low winter hardiness are the following: Atlantic ninebark (Physocarpus opulifolius (L.) Maxim.), Spiraea salicifolia (Spiraea salicifolia L.), and common snowberry (Symphoricarpos albus (L.) S.F. Blake). They accumulate maximum sucrose by October–November and then rapidly consume it during the winter months. English dogwood (Philadelphus coronarius L.) is known for freezing the shoots to the level of snow, which may be due to the almost complete consumption of sucrose by January. The article provides options for strategies of sugars accumulation and consumption by plants belonging to different floristic areas.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license • The authors declare that there is no conflict of interest

Authors

Marina M. Andronova1, Doctor of Agriculture, Assoc. Prof.; ResearcherIDAAB-4480-2020, ORCID: https://orcid.org/0000-0002-9654-8913
Andrey V. Platonov2, Candidate of Biology, Assoc. Prof.; ResearcherIDE-9310-2019, ORCID: https://orcid.org/0000-0002-1110-7116

Affiliation

1Vologda Institute of Law and Economics of the Federal Penitentiary Service of Russia, ul. Shchetinina, 2, Vologda, 160002, Russian Federation; e-mail: mary1969@yandex.ru
2Vologda Research Center of the Russian Academy of Sciences, ul. Gor’kogo, 56 a, Vologda, 160014, Russian Federation; e-mail: platonov70@yandex.ru

Keywords

introduced species, winter hardiness, frost resistance, sugars

For citation

Andronova M.M., Platonov A.V. Sucrose in the Tissues of Annual Shoots of Introduced Woody Plants. Lesnoy Zhurnal [Russian Forestry Journal], 2022, no. 1, pp. 62–76. DOI: 10.37482/0536-1036-2022-1-62-76

References

1. Andronova M.M. Winter Hardiness and Frost Resistance of Wood Species in the Antropogenic Environment of European North of Russia. Uspekhi sovremennogo estestvoznaniya [Advances in Current Natural Sciences], 2018, no. 5, pp. 26–32. DOI: https://doi.org/10.17513/use.36750
2. Babich N.A., Karbasnikova E.B., Dolinskaya I.S. Introduced and Extrazonal Species in Anthropogenic Environment (Case Study of the City of Vologda): Monograph. Arkhangelsk, IPC NArFU Publ., 2012. 184 p.
3. Besschetnova N.N. Fat Content in Shoot Cells of Scotch Pine Elite Trees. Lesnoy Zhunal [Russian Forestry Journal], 2012, no. 4, pp. 48–55. URL: http://lesnoizhurnal.ru/upload/iblock/a5f/bpbg6.pdf
4. Besschetnova N.N. Breeding and Genetic Aspects of the Formation, Improvement and Use of the Gene Pool of Scots Pine (Pinus sylvestris L.): Dr. Agric. Sci. Diss. Nizhny Novgorod, 2016. 573 p.
5. Besschetnova N.N., Kul’kova A.V. The Content of Reserve Nutrients in the Cells of Annual Shoot Tissues of the Representatives of the Spruce (Picea L.) Genus in Nizhny Novgorod Region. Lesnoy Zhunal [Russian Forestry Journal], 2019, no. 6, pp. 52–61. DOI: https://doi.org/10.17238/issn0536-1036.2019.6.52
6. Veretennikov A.V. Plant Physiology. Moscow, Akademicheskiy proyekt Publ., 2006. 480 p.
7. Vorob’yev R.A. Ecological and Physiological Features of Species of the Genus Spruce (Picea L.) when Assessing the Prospects of Introduction in the Nizhny Novgorod Region: Cand. Biol. Sci. Diss. Moscow, 2014. 247 p.
8. Report on the Environmental State and Protection of the Vologda Region in 2015. Government of the Vologda Region, Department of Natural Resources and Environmental Protection of the Vologda Region. Vologda, Sad-ogorod Publ., 2016. 232 p.
9. Report on the Environmental State and Protection of the Vologda Region in 2016. Government of the Vologda Region, Department of Natural Resources and Environmental Protection of the Vologda Region. Vologda, Sad-ogorod Publ., 2017. 250 p.
10. Zalyvskaya O.S. Comprehensive Evaluation of Adaptive Capacity of Introduced Species. Lesnoy Zhurnal [Russian Forestry Journal], 2014, no. 6, pp. 161–166. URL: http://lesnoizhurnal.ru/upload/iblock/ea7/2-_-kompleksnaya-otsenka-adaptivnoy-sposobnosti-introdutsentov.pdf
11. Zalyvskaya O.S., Babich N.A. Winter Hardiness and Resistance to Frost Introduced Species. Vestnik Moskovskogo gosudarstvennogo universiteta lesa – Lesnoy vestnik [Forestry Bulletin], 2014, no. 1, pp. 105–110.
12. Lapin P.I., Sidneva S.V. Assessment of Prospects for the Introduction of Woody Plants according to Visual Observations. Experience of Woody Plant Introduction. Moscow, 1973, pp. 7–67.
13. Lysikov A.B. Issue of Winter Hardiness of Ornamental Crops. Aktual’nyye problemy lesnogo kompleksa, 2016, no. 44, pp. 39–43.
14. Malakhovets P.M., Tisova V.A. Winter Hardiness of Introduced Woody Plants in the North. Lesnoy Zhunal [Russian Forestry Journal], 1995, no. 2-3, pp. 25–30. URL: http://lesnoizhurnal.ru/upload/iblock/5a2/25_29.pdf
15. Martynov L.G. Rhytm of Seasonal Development and Winter Hardiness of European Woody Plants in the Middle Taiga Subzone of Komi Republic. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2015, vol. 17, no. 5, pp. 155–159.
16. Methods of Biochemical Analysis of Plants. Ed. by A.I. Ermakov. Leningrad, Agropromizdat Publ., 1987. 430 p.
17. Trunova T.I. A Plant and Low Temperature Stress. Moscow, Nauka Publ., 2007. 54 p.
18. Tumanov I.I. Physiological Basis of Winter Hardiness of Cultivated Plants. Moscow, Sel’hozgiz Publ., 1940. 366 p.
19. Allen S., Barros V., Burton I., Campbell-Lendrum D., Cardona O., Cutter S. et al. Summary for Policymakers. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Ed. by C.B. Field, V. Barros, T.F. Stocker, Q. Dahe. Cambridge, Cambridge University Press, 2012, pp. 3–22. DOI: https://doi.org/10.1017/CBO9781139177245.003
20. Augspurger C.K. Reconstructing Patterns of Temperature, Phenology, and Frost Damage over 124 Years: Spring Damage Risk is Increasing. Ecology, 2013, vol. 94, iss. 1, pp. 41–50. DOI: https://doi.org/10.1890/12-0200.1
21. Cavender-Bares J. Impacts of Freezing on Long Distance Transport in Woody Plants. Vascular Transport in Plants. Ed. by N.M. Holbrook, M.A. Zwieniecki. USA, Academic Press, 2005, pp. 401–424. DOI: https://doi.org/10.1016/B978-012088457-5/50021-6
22. Charra–Vaskou K., Charrier G., Wortemann R., Beikircher B., Cochard H., Ameglio H., Mayr S. Drought and Frost Resistance of Trees: A Comparison of Four Species at Different Sites and Altitudes. Annals of Forest Science, 2012, vol. 69, iss. 3, pp. 325 333.
DOI: https://doi.org/10.1007/s13595-011-0160-5
23. Dormling I. Bud Dormancy, Frost Hardiness, and Frost Drought in Seedlings of Pinus sylvestris and Picea abies. Advances in Plant Cold Hardiness. Ed. by P.H. Li, L. Christersson. Boca Raton, FL, CRC Press, 1993, pp. 285–298. DOI: https://doi.org/10.1201/9781351069526-20
24. Grabherr G., Gottfried M., Pauli H. Climate Effects on Mountain Plants. Nature, 1994, vol. 369, p. 448. DOI: https://doi.org/10.1038/369448a0
25. Jalili A., Jamzad Z., Thompson K., Araghi M.K., Ashraf S., Hasaninejad M., Panahi P., Hooshang N., Azadi R., Tavakol M.S., Palizadar M., Rahmanpour A., Farghadan F., Mirhossaini S.G., Parvaneh K. Climate Change, Unpredictable Cold Waves and Possible Brakes on Plant Migration. Global Ecology and Biogeography, 2010, vol. 19, iss. 5, pp. 642–648. DOI: https://doi.org/10.1111/j.1466-8238.2010.00553.x
26. Kalberer S.R., Wisniewski M., Arora R. Deacclimation and Reacclimation of Cold-Hardy Plants: Current Understanding and Emerging Concepts. Plant Science, 2006, vol. 171, iss. 1, pp. 3–16. DOI: https://doi.org/10.1016/j.plantsci.2006.02.013
27. Kasuga J., Arakawa K., Fujikawa S. High Accumulation of Soluble Sugars in Deep Supercooling Japanese White Birch Xylem Parenchyma Cells. New Phytologist, 2007, vol. 174, iss. 3, pp. 569–579. DOI: https://doi.org/10.1111/j.1469-8137.2007.02025.x
28. Kodra E., Steinhaeuser K., Ganguly A.R. Persisting Cold Extremes under 21st-Century Warming Scenarios. Geophysical Research Letters, 2011, vol. 38, iss. 8, art. L08705. DOI: https://doi.org/10.1029/2011GL047103
29. Krasova N.G. Parameters of Apple Tree Variety Resistant to Winter Unfavorable Conditions. Vestnik OrelGAU, 2013, vol. 2(41), pp. 73–77.
30. Kreyling J. Winter Climate Change: A Critical Factor for Temperate Vegetation Performance. Ecology, 2010, vol. 91, iss. 7, pp. 1939–1948. DOI: https://doi.org/10.1890/09-1160.1
31. Kreyling J., Schmid St., Aas G. Cold Tolerance of Tree Species is Related to the Climate of Their Native Ranges. Journal of Biogeography, 2015, vol. 42, iss. 1, pp. 156-166. DOI: https://doi.org/10.1111/jbi.12411
32. Larcher W. Resistenzphysiologische Grundlagen der evolutiven Kälteakklimatisation von Sproßpflanzen. Plant Systematics and Evolution, 1981, vol. 137, pp. 145–180. DOI: https://doi.org/10.1007/BF00989871
33. Larcher W. Physiological Plant Ecology. Berlin, Springer, 2003. 513 p. DOI: https://doi.org/10.1007/978-3-662-05214-3
34. Lemoine D.G., Granier A., Cochard H. Mechanism of Freeze-Induced Embolism in Fagus sylvatica L. Trees, 1999, vol. 13, no. 4, pp. 206–210. DOI: https://doi.org/10.1007/s004680050234
35. Lenoir J., Gégout J.C., Marquet P.A., de Ruffray P., Brisse H. A Significant Upward Shift in Plant Species Optimum Elevation during the 20th Century. Science, 2008, vol. 320, iss. 5884, pp. 1768–1771. DOI: https://doi.org/10.1126/science.1156831
36. Levitt J. Responses of Plants to Environmental Stresses. Vol. 1. New York, Academic Press, 1980. 497 p.
37. Li Ch., Puhakainen T., Welling A., Viherä-Aarnio A., Ernstsen A., Junttila O., Heino P., Palva E.T. Cold Acclimation in Silver Birch (Betula pendula). Development of Freezing Tolerance in Different Tissues and Climatic Ecotypes. Physiologia Plantarium, 2002, vol. 116, iss. 4, pp. 478–488. DOI: https://doi.org/10.1034/j.1399-3054.2002.1160406.x
38. Nathan R., Horvitz N., He Y., Kuparinen A., Schurr F.M., Katul G.G. Spread of North American Wind-Dispersed Trees in Future Environments. Ecology Letters, 2008, vol. 14, iss. 3, pp. 211–219. DOI: https://doi.org/10.1111/j.1461-0248.2010.01573.x
39. Parmesan C., Yohe G. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 2003, vol. 421, pp. 37–42. DOI: https://doi.org/10.1038/nature01286
40. Petoukhov V., Semenov V.A. A Link between Reduced Barents-Kara Sea Ice and Cold Winter Extremes over Northern Continents. Journal of Geophysical Research: Atmospheres, 2010, vol. 115, iss. D21, art. D21111. DOI: https://doi.org/10.1029/2009JD013568
41. Sakai A. Studies on the Frost-Hardiness of Woody Plants. I. The Causal Relation between Sugar Content and Frost-Hardiness. Contributions from the Institute of Low Temperature Science, 1962, no. B11, pp. 1–40.
42. Sakai A., Larcher W. Frost Survival of Plants. Berlin, Springer, 1987. 321 p. DOI: https://doi.org/10.1007/978-3-642-71745-1
43. Sakai A., Weiser C.J. Freezing Resistance of Trees in North America with Reference to Tree Regions. Ecology, 1973, vol. 54, iss. 1, pp. 118–126. DOI: https://doi.org/10.2307/1934380
44. Sauter J.J., Kloth S. Changes in Carbohydrates and Ultrastructure in Xylem Ray Cells of Populus in Response to Chilling. Protoplasma, 1987, vol. 137, pp. 45–55. DOI: https://doi.org/10.1007/BF01281175
45. Sauter J.J., van Cleve B. Storage, Mobilization and Interrelations of Starch, Sugars, Protein and Fat on the Ray Storage Tissue of Poplar Trees. Trees, 1994, vol. 8, pp. 297–304. DOI: https://doi.org/10.1007/BF00202674
46. Strimbeck G.R., Schaberg P.G., Fossdal C.G., Schröder W.P., Kjellsen T.D. Extreme Low Temperature Tolerance in Woody Plants. Frontiers in Plant Science, 2015, vol. 6, art. 884. DOI: https://doi.org/10.3389/fpls.2015.00884
47. Thomas F.M., Meyer G., Popp M. Effects of Defoliation on the Frost Hardiness and the Concentrations of Soluble Sugars and Cyclitols in the Bark Tissue of Pedunculate Oak (Quercus robur L.). Annals of Forest Science, 2004, vol. 61, no. 5, pp. 455–463. DOI: https://doi.org/10.1051/forest:2004039
48. Vavrus S., Walsh J.E., Chapman W.L., Portis D. The Behavior of Extreme Cold Air Outbreaks under Greenhouse Warming. International Journal of Climatology, 2006, vol. 26, pp. 1133–1147. DOI: https://doi.org/10.1002/joc.1301
49. Wisniewski M., Gusta L.V. The Biology of Cold Hardiness: Adaptive Strategies Preface. Environmental and Experimental Botany, 2014, vol. 106, pp. 1–3. DOI: https://doi.org/10.1016/j.envexpbot.2014.03.001
50. Yamada Y., Awano T., Fujita M., Takabe K. Living Wood Fibers Act as Large-Capacity “Single-Use” Starch Storage in Black Locust (Robinia pseudoacacia). Trees, 2011, vol. 25, iss. 4, pp. 607–616. DOI: https://doi.org/10.1007/s00468-010-0537-3


 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png