Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

Mathematical Modeling of the Route of Logging Roads

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

A.O. Borovlev, A.V. Skrypnikov, V.G. Kozlov, T.V. Tyurikova, O.N. Tveritnev,
V.V. Nikitin

Complete text of the article:

Download article (pdf, 0.6MB )

UDС

630*383

DOI:

10.37482/0536-1036-2021-4-150-161

Abstract

The implementation of tasks related to the development of the transportation network as a whole and logging roads as an integral part of it requires scientifically based theoretical studies of the patterns of formation of spatial curves when combining elements of the plan and the longitudinal profile, since the rational laying of the route for many years determines its most important transport and operational characteristics (speed, traffic safety, traffic capacity). Consideration of the visual perception of the road by the driver will improve the quality of design decisions, which will allow to avoid emergencies in the future after setting the route into service. On the other hand, a decrease in speed before seemingly sharp turns of the road affects the efficiency of logging road transport. Therefore, the view of the road ahead should strongly orient the driver, i.e. be visually clear and clearly changing, ensuring the constancy or smooth reduction of the traffic flow mode. At the same time, the need for a successful spatial solution of the road increases. In the designs of logging roads, straight lines, transition curves, described in recent years most often according to the clotoid, and circular curves are found as elements of the route plan. It is found that the road view in perspective correctly orients the driver of the car, i.e. it is visually clear, provided that the lines describing the edges of the roadway and the edges of the roadway in the perspective image are curved in the same direction as in the road plan. The purpose of the work is to determine a set of quantitative indicators (curvature, radius of the curve in the plan, maximum curvature, maximum rate of change of curvature) for optimization of the visual smoothness and clarity of the central projections of elementary spatial and plane curves. The performed studies allow us to fully characterize the visual smoothness and clarity of the central projections of elementary spatial and plane curves. The above algorithm makes it possible to compile a computer program to determine the mentioned indicators. The indicators determined by this algorithm allow us to evaluate both the visual smoothness and clarity of curves on logging roads.

Authors

Anton O. Borovlev1, External PhD Student; ResearcherID:AAL-8641-2021, ORCID: https://orcid.org/0000-0002-5431-9944
Alexey V. Skrypnikov1, Doctor of Engineering, Prof.; ResearcherID:AAE-8824-2019, ORCID: https://orcid.org/0000-0003-1073-9151
Vyacheslav G. Kozlov2, Doctor of Engineering, Prof.; ResearcherID:G-9613-2017, ORCID: https://orcid.org/0000-0003-2571-8687
Tatyana V. Tyurikova3, Candidate of Engineering, Assoc. Prof.; ResearcherID: P-8991-2019, ORCID: https://orcid.org/0000-0002-3592-310X
Oleg N. Tveritnev1, External PhD Student; ResearcherID:AAE-1352-2021, ORCID: https://orcid.org/0000-0002-8183-0393
Vladimir V. Nikitin4, Candidate of Engineering, Assoc. Prof.; ResearcherID:AAE-9971-2019, ORCID: https://orcid.org/0000-0001-5284-8116
1 e-mail: borov.borov.ar@yandex.ru, skrypnikovvsafe@mail.rutveritneffo@yandex.ru
2 e-mail: vya-kozlov@yandex.ru
3 e-mail: t.turikova@narfu.ru
4 e-mail: box534@mail.ru

Affiliation

1Voronezh State University of Engineering Technologies, prosp. Revolyutsii, 19, Voronezh, 394036, Russian Federation
2Voronezh State Agricultural University named after Emperor Peter the Great, ul. Michurina, 1, Voronezh, 394087, Russian Federation
3Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation
4Bauman Moscow State Technical University (National Research University), ul. 2-ya Baumanskaya, 5, str. 1, Moscow, 105005, Russian Federation

Keywords

spatial curves, route layout, visual clarity, curved section, logging roads

For citation

Borovlev A.O., Skrypnikov A.V., Kozlov V.G., Tyurikova T.V., Tveritnev O.N., Nikitin V.V. Mathematical Modeling of the Route of Logging Roads. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 4, pp. 150−161. DOI: 10.37482/0536-1036-2021-4-150-161

References

1. Babkov V.F. Road Conditions and Traffic Safety. Moscow, Transport Publ., 1993. 271 p.

2. Birulya A.K. Operation of Roads. Moscow, Transport Publ., 1966. 326 p.

3. Gulevsky V.A., Skrypnikov A.V., Kozlov V.G., Lomakin D.V., Mikova E.Yu. Experimental Evaluation of Traction Properties and Road Evenness in Various Road and Weather Conditions. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta [Vestnik of Voronezh State Agrarian University], 2018, no. 1(56), pp. 112–118. DOI: https://doi.org/10.17238/issn2071-2243.2018.1.112

4. Dryu D. Theory of Traffic Flows and Their Management. Moscow, Transport Publ., 2012. 424 p.

5. Ivanov V.N., Erokhov V.N. Influence of Parameters of Roads on Fuel Consumption. Avtomobil’nyye dorogi, 2014, no. 8, pp. 10–13.

6. Kaluzhskiy Ya.A., Begma I.V., Kislyakov V.M., Filippov V.V. Application of Queueing Theory in the Design of Roads. Moscow, Transport Publ., 1969. 136 p.

7. Kozlov V.G. Methods, Models and Algorithms for Designing Timber Roads Considering the Impact of Climate and Weather on Traffic Conditions: Dr. Eng. Sci. Diss. Arkhangelsk, 2017. 406 p.

8. Kozlov V.G., Skrypnikov A.V., Mikova E.Yu., Mogutnov R.V., Chirikov E.V. Formation of the Model of Designing the System “Road Conditions – Transport Flows” and Ways of Its Implementation. Lesotekhnicheskiy zhurnal [Forestry Engineering Journal], 2018, vol. 8, no. 1(29), pp. 100–111. DOI: https://doi.org/10.12737/article_5ab0dfbe6ece23.91630316

9. Kozlov V.G., Skrypnikov A.V., Mogutnov R.V., Mikova E.Yu., Zelikova Yu.A. Comprehensive Experimental Research of Changing Parameters and Characteristics of Road Conditions, Transport Flows and Motion Modes under Influence of Climate and Weather. Lesotekhnicheskiy zhurnal [Forestry Engineering Journal], 2018, vol. 8, no. 2(30), pp. 156–168. DOI: https://doi.org/10.12737/article_5b240611858af4.37544962

10. Kozlov G.V., Skrypnikov A.V., Chernyshova E.V., Chirkov E.V., Postavnichiy S.A, Mogutnov R.V. Theoretical Foundations and Methods of Mathematical Modeling of Forestry Roads. Lesnoy Zhurnal [Russian Forestry Journal], 2018, no. 6, pp. 117–127. DOI: https://doi.org/10.17238/issn0536-1036.2018.6.117

11. Kondrashova E.V., Skvortsova T.V. Improvement of Road Traffic Organization in the Forest Complex Transport Systems. Sistemy upravleniya i informatsionnyye tekhnologii [Automation and Remote Control], 2008, no. 3-2(33), pp. 272–275.

12. Sil’yanov V.V., Sitnikov Yu.M. Calculation of Traffic Speeds in the Design of Roads. Trudy MADI, 1974, iss. 72, pp. 47–66.

13. Skrypnikov A.V., Kozlov V.G., Lomakin D.V., Mikova E.Yu. Assessment of the Impact on the Speed of the Constant Parameters of the Plan and Profile in the Various States of the Road Surface. Lesnoy vestnik [Forestry Bulletin], 2017, vol. 21, no. 6, pp. 43–49. DOI: https://doi.org/10.18698/2542-1468-2017-6-43-49

14. Khomyak Ya.V. Designing Road Networks. Moscow, Transport Publ., 1983. 207 p.

15. Chernyshova E.V. Algorithm for Solving the Problem of Optimal Tracing of a Timber Road on a Non-Uniform Terrain. Vestnik Voronežskogo gosudarstvennogo universiteta inženernyh tehnologij [Proceedings of the Voronezh State University of Engineering Technologies], 2017, vol. 79, no. 2(72), pp. 113–120. DOI: https://doi.org/10.20914/2310-1202-2017-2-113-120

16. Berestnev O., Soliterman Y., Goman A. Development of Scientific Bases of Forecasting and Reliability Increasement of Mechanisms and Machines – One of the Key Problems of Engineering Science. International Symposium on History of Machines and Mechanisms Proceedings HMM 2000. Ed. by M. Ceccarelli. Dordrecht, Springer, 2000, pp. 325– 332. DOI: https://doi.org/10.1007/978-94-015-9554-4_37

17. Kozlov V.G., Gulevsky V.A., Skrypnikov A.V., Logoyda V.S., Menzhulova A.S. Method of Individual Forecasting of Technical State of Logging Machines. IOP Conference Series: Materials Science and Engineering, 2018, vol. 327, iss. 4, art. 042056. DOI: https://doi.org/10.1088/1757-899X/327/4/042056

18. Mogutnov R.V., Tikhomirov P.V., Skrypnikov A.V., Zavrazhnov A.I., Kozlov V.G., Belyaev A.N., Zelikov V.A., Mikheyev N.V. Designing Mathematical Models of Geometric and Technical Parameters for Modern Road-Building Machines Versus the Main Parameter of the System. Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research” Dedicated to the 85th Anniversary of H.I. Ibragimov (ISEES 2019). Atlantis Press, 2019, pp. 823–827. DOI: https://doi.org/10.2991/isees-19.2019.165

19. Skrypnikov A., Dorokhin S., Kozlov V.G., Chernyshova E.V. Mathematical Model of Statistical Identification of Car Transport Informational Provision. ARPN Journal of Engineering and Applied Sciences, 2017, vol. 12, no. 2, pp. 511–515.






Mathematical Modeling of the Route of Logging Roads

 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png