Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

The Effect of Fiber Brushing and Shortening when Beating on the Strength, Deformation and Fracture Toughness Properties of Cellulosic Materials

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

V.V. Gorazdova, E.V. Dernova, D.A. Dul'kin, E.O. Okulova

Complete text of the article:

Download article (pdf, 0.9MB )

UDС

676.054.6

DOI:

10.17238/issn0536-1036.2018.2.109

Abstract

Beating of fibrous materials is one of the key stages of plant fibers processing in order to obtain paper-forming properties. When beating plant fibers in an aqueous medium we can observe two main processes: a purely mechanical (fiber shortening and longitudinal splitting into fibrils) and colloid-chemical (fiber swelling and hydration). The goal of research is to study the effect of the preferential shortening or fibrillating beating simulated in laboratory conditions on the strength and deformation characteristics of fibrous semifinished products. A preferential shortening of fibers occurs when thin stock beating and each fiber entering between the knives of the beater has a higher specific pressure. To obtain highly fibrillated fibers, by contrast, thick stock should be subjected to beating, and each fiber comes under minimal specific pressure and a greater mutual frequency of fibers, which facilitates their combing and splitting. Simulation of shortening or fibrillating beating at different mass con-centration is conducted in laboratory conditions using three types of beaters ‒ laboratory beating engine, Jokro mills and PFI. The study subjects are the samples of coniferous un-bleached high-yield and average-yield pulp. The paper demonstrates the possibility of simu-lation of fiber preferential shortening or fibrillation under circumstances of laboratory beat-ing. This allows purposefully modifying papermaking characteristics of fibers and obtaining a paper sheet with desired application properties.

Authors

V.V. Gorazdova1, Postgraduate Student
E.V. Dernova1, Candidate of Engineering Sciences, Associate Professor
D.A. Dul'kin2, Doctor of Engineering Sciences, General Director
E.O. Okulova1, Postgraduate Student

Affiliation

1Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; е-mail: v.gorazdova@narfu.rue.dernova@narfu.rue.okulova@narfu.ru
2United Paper Factories, ul. Trudovaya, 2, Polotnyanyy Zavod village, Dzerzhinskiy district, Kaluga region, 249844, Russian Federation; e-mail: dmdulkin@yandex.ru

Keywords

beating, brushing, shortening, high-yield pulp, average-yield pulp, strength, de-formability, fracture toughness

For citation

Gorazdova V.V., Dernova E.V., Dul'kin D.A., Okulova E.O. The Effect of Fiber Brushing and Shortening when Beating on the Strength, Deformation and Fracture Toughness Properties of Cellulosic Materials. Lesnoy zhurnal [Forestry journal], 2018, no. 2, pp. 109–121. DOI: 10.17238/issn0536-1036.2018.2.109

References

1. GOST 13525.1–79. Polufabrikaty voloknistye, bumaga, karton. Metody opredele-niya prochnosti na razryv i udlinenie pri rastyazhenii [State Standard 13525.1–79. Fibre Semimanufactures, Paper and Board. Tensile Strength and Elongation Tests]. Moscow, Standartinform Publ., 2007. 5 p.
2. GOST 13525.2–80. Polufabrikaty voloknistye, bumaga i karton. Metod opredele-niya prochnosti na izlom pri mnogokratnykh peregibakh [State Standard 13525.2–80. Fibre Semimanufactures, Paper and Board. Method for Determination of Breaking Strength]. Moscow, Standartinform Publ., 2007. 4 p.
3. GOST 13525.8–86. Polufabrikaty voloknistye, bumaga i karton. Metod opredele-niya soprotivleniya prodavlivaniyu [State Standard 13525.8–86. Fibre Intermediate Prod-ucts, Paper and Board. Method for Determination of Resistance to Bursting]. Moscow, Standartinform Publ., 2007. 6 p.
4. GOST 14363.4–89. Tsellyuloza. Metod podgotovki prob k fiziko-mekhanicheskim ispytaniyam [State Standard 14363.4–89. Pulp. Preparation of Samples for Physical and Mechanical Tests]. Moscow, Standartinform Publ., 1993. 14 p.
5. GOST 27015–86. Bumaga i karton. Metody opredeleniya tolshchiny, plotnosti i udel'nogo ob"ema [State Standard 27015–86. Paper and Board. Methods for Determining Thickness, Density and Specific Volume]. Moscow, Standartinform Publ., 2002. 4 p.
6. GOST R ISO 9895–2013. Bumaga i karton. Opredelenie soprotivleniya szhatiyu. Metod ispytaniya na korotkom rasstoyanii mezhdu zazhimami [State Standard R ISO 9895–2013. Paper and Board. Compressive Strength. Short-Span Test]. Moscow, Standartinform Publ., 2014. 12 p.
7. Dul'kin D.A., Spiridonov V.A., Komarov V.I., Blinova L.A. Svoystva tsellyuloz-nykh volokon i ikh vliyanie na fiziko-mekhanicheskie kharakteristiki bumagi i kartona [Properties of Cellulose Fibers and Their Influence on the Physical and Mechanical Charac-teristics of Paper and Paperboard]. Ed. by V.I. Komarov. Arkhangelsk, NArFU Publ., 2011. 176 p. (In Russ.)
8. D'yakova E.V., Komarov V.I., Noskova E.S. Ustoychivost' k initsiirovaniyu i rostu treshchin v strukture tsellyulozno-bumazhnykh materialov [Stability to Crack Initiating and Growth in Structure of Pulp-and-paper Materials]. Lesnoy zhurnal [Forestry journal], 2007, no. 1, pp. 126–141.
9. Ivanov S.N. Tekhnologiya bumagi [Paper Technology]. Moscow, Shkola bumagi Publ., 2006. 696 p. (In Russ.)
10. Kazakov Ya.V., Komarov V.I. Programmnoe obespechenie laboratornogo ispytatel'nogo kompleksa dlya otsenki deformativnosti i prochnosti tsellyulozno-bumazhnykh materialov [The Software of the Laboratory Test Complex for the Deformability and Strength Assessment of Pulp-and-Paper Materials]. Certificate of the Computer Software Official Registration, no. 2001610526, 2001.
11. Karlsson H. Fiber Guide. Fiber Analysis and Process Applications in the Pulp and Paper Industry. Kista, Sweden, AB Lorentzen & Werrte, 2006. 120 p.
12. Clark J. d'A. Pulp Technology and Treatment for Paper. San Francisco, M. Freeman Publ., 1978. 751 p.
13. Komarov V.I., Kazakov Ya.V. Svyaz' fundamental'nykh svoystv (po Klarku) ne-razmolotoy sul'fatnoy nebelenoy tsellyulozy s kharakteristikami deformativnosti i prochnos-ti [Relationship of Fundamental Properties (According to Clark) of Unrefined Sulphate Un-bleached Cellulose with Deformation and Strength Properties]. Lesnoy zhurnal [Forestry journal], 1993, no. 2-3, pp. 112–116.
14. Komarov V.I., Kazakov Ya.V. Vliyanie razmola na korrelyatsiyu fundamental'nykh svoystv (po Klarku) sul'fatnoy nebelenoy tsellyulozy s kharakteristikami deformativnosti i prochnosti [Influence of Beating on the Correlation of Fundamental Properties (According to Clark) of Sulphate Unbleached Pulp with Deformation and Strength Properties]. Aktual'nye problemy ratsional'nogo ispol'zovaniya prirodnykh i energeticheskikh resursov Evropeyskogo Severa [Actual Problems of Rational Use of Natural and Energy Resources of the European North]. Arkhangelsk, ASTU Publ., 1994, pp. 105–111. (In Russ.)
15. Lumiaynen D., Puzyrev S.S., Chizhov G.I. Razmol pri nizkoy kontsentratsii [Beating under Circumstances of Low Concentration]. Moscow, TsINTIkhimneftemash Publ., 1992. 23 p. (In Russ.)
16. Materialy kompanii «Advanced Fiber Technology» [Reports of “Advanced Fiber Technology”]. 8-ya Mezhdunar. nauch.-tekhn. konf. «Pap-For» [8th Intern. Sci. Techn. Conf. “Pap-For”]. Saint Petersburg, 2004. 217 p. (In Russ.)
17. Puzyrev S.S., Korostelev S.A., Kovaleva O.P. Razmol pri nizkoy kontsentratsii [Grinding under Circumstances of Low Concentration]. Tsellyuloza. Bumaga. Karton [Pulp. Paper. Board], 2006, no. 5, pp. 54–58.
18. ISO/TS 17958:2013. Paper and Board. Determination of Fracture Toughness. Constant Rate of Elongation Method. Technical Committee, Subcommittee SC 2, 2013. 16 p.
19. Mäkelä P., Fellers C. An Analytic Expression for Determination of Fracture Toughness of Paper Materials. Innventia Report, 2010, no. 54.
20. Mäkelä P., Nordhagen H., Gregersen Ø.W. Validation of Isotropic Deformation Theory of Plasticity for Fracture Mechanics Analysis of Paper Materials. Nordic Pulp Paper Res. J., 2009, no. 24, pp. 388–394.
21. SCAN-P77-95. Papers and Boards. Fracture Toughness. Scandinavian Pulp, Paper and Board. Testing Committee. 8 p.
22. TAPPI Standard T 231 pm-96. Zero-Span Breaking Strength of Pulp (Dry Zero-Span Tensile). Test Method T 231 cm-07. Atlanta, USA, TAPPI Press, 1996.
23. TAPPI T Standard 273 pm-95. Wet Zero-Span Tensile Strength of Pulp. Atlanta, USA, TAPPI Press, 1995.
24. Varanasi S., Batchelor W.J. Rapid Preparation of Cellulose Nanofibre Sheet. Cellulose, 2013, vol. 20, no. 1, pp. 211‒215.

Received on October 24, 2017


The Effect of Fiber Brushing and Shortening when Beating on the Strength, Deformation and Fracture Toughness Properties of Cellulosic Materials

 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png