
Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425
Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

|
Nitration of Hydrolysis Lignin with Nitric Acid in Dimethyl Sulfoxide and Water. С. 185-201
|
 |

These works are licensed under a Creative Commons Attribution 4.0 International License.
Veshnyakov V.A., Yokubjanov M.R., Pikovskoi I.I., Khabarov Yu.G.
UDС
547.992.3:66.095.81+66.095.81.094.3
DOI:
10.37482/0536-1036-2025-4-185-201
Abstract
Hydrolysis lignin is a by-product which is an insoluble residue formed after the hydrolysis of polysaccharides of lignocellulosic materials for further processing of the resulting monosaccharides into bioethanol or other products. Hydrolysis lignin, unlike other technical lignins, is insoluble in water and organic solvents, and also contains non-hydrolysed cellulose, extractive and mineral substances. Finding ways to rationalize the use of this by-product for the production of chemicals is an urgent task, the solution to which will increase the economic attractiveness of the cellulosic bioethanol technologies. In this work, the nitration of hydrolysis lignin with nitric acid in a mixture with and without dimethyl sulfoxide during heating has been investigated, which allows the lignin part to be converted into water-soluble products upon alkalization. Klason lignin has been used as a model of hydrolysis lignin that does not contain a cellulose component. Using electron spectroscopy, the formation of water-soluble products from lignin has been monitored, and the water-soluble products have been subject to degradation in the reaction mixture. For Klason lignin, a solvent-nitric acid mixture composition has been selected, which allows preserving the structure of lignin. Based on the mass values of residues during nitration of hydrolysis lignin, kinetic dependences of the course of its delignification have been constructed and the observed rate constants have been calculated by describing the process using 1st-order kinetic equations at 60...100 °C. The activation energies of the delignification of hydrolysis lignin in the case of using dimethyl sulfoxide as a co-solvent and without it have been 96 and 86 kJ/mol, respectively. Upon nitration of hydrolysis lignin, water-soluble products have been formed, containing 3 fractions with the following molecular mass values: less than 103, 103...104 and more than 104 g/mol. In this case, during the nitration process, the content of the last fraction has decreased due to the depolymerizing effect of nitric acid. An increase in the proportion of nitric acid in the mixture has led to a stronger depolymerization of lignin macromolecules, as a result of which the nitration products of hydrolysis lignin have lacked a fraction of more than 104 g/mol, and the 2 fractions with lower molecular mass values have shifted towards low molecular mass values.
Keywordslignin, hydrolysis lignin, Klason lignin, oxidative nitration, dimethyl sulfoxide, depolymerization, delignification, kinetics
For citation
Veshnyakov V.A., Yokubjanov M.R., Pikovskoi I.I., Khabarov Yu.G. Nitration of Hydrolysis Lignin with Nitric Acid in Dimethyl Sulfoxide and Water. Lesnoy Zhurnal = Russian Forestry Journal, 2025, no. 4, pp. 185–201. (In Russ.). https://doi.org/10.37482/0536-1036-2025-4-185-201
References
- Belovezhets L.A., Volchatova I.V., Medvedeva S.A. Promising Methods for Processing Secondary Lignocellulosic Raw Materials. Khimija Rastitel’nogo Syr’ja, 2010, no. 2, pp. 5–16. (In Russ.).
- Bel’kova L.P., Gromov V.S., Mikhailov A.I. Polychronic Kinetics of Wood Delignification Process. 1. Nitric Acid Delignification Process. Khimiya drevesiny, 1980, no. 6, pp. 50–58. (In Russ.).
- Bel’kova L.P., Gromov V.S., Mikhailov A.I. Polychronic Kinetics of Wood Delignification Process. 2. Diffusion Kinetics of Nitric Acid Delignification. Khimiya drevesiny, 1980, no. 6, pp. 59–64. (In Russ.).
- Gorbunova O.F., Bogolitsyna G.M., Kochergina G.G. On Delignification with Nitric Acid. Lesnoy Zhurnal = Russian Forestry Journal, 1991, no. 3, pp. 89–95. (In Russ.).
- Evstigneyev E.I., Yuzikhin O.S., Gurinov A.A., Ivanov A.Yu., Artamonova T.O., Khodorkovskii M.A., Bessonova E.A., Vasil’ev A.V. Chemical Structure and Physicochemical Properties of Oxidized Hydrolysis Lignin. Zhurnal prikladnoj khimii = Russian Journal of Applied Chemistry, 2015, vol. 88, pp. 1295–1303. https://doi.org/10.1134/S107042721508011X
- Ivanov V.I., Chuksanova A.A., Sergeeva L.L. Nitration of Saccharification Lignin. Izvesitiya Akademii nauk SSSR. Seriya: Khimicheskaya = Russian Chemical Bulletin, 1957, vol. 6, pp. 513–518. https://doi.org/10.1007/BF01171974
- Kapustina I.B., Moskalchuk L.N., Matyushonok T.G., Pozylova N.M., Khololovich M.E. Investigation of Hydrolysis Lignin for the Purpose of its Possible Use as a Land Reclamation Sorbent for Rehabilitation of Soils Polutted with Radionuclides. Khimiya v interesakh ustojchivogo razvitiya = Chemistry for Sustainable Development, 2006, vol. 14, no. 1, pp. 13–18.
- Romanenko K.A., Bogdanovich N.I., Kanarskiy A.V. Obtaining of Activated Carbons by Pyrolysis of Hidrolytic Lignin. Lesnoy Zhurnal = Russian Forestry Journal, 2017, no. 4, pp. 162–171. (In Russ.). https://doi.org/10.17238/issn0536-1036.2017.4.162
- Sorokin V.I., Bakina G.G. Features of Delignification of Wood of Different Species during Interaction with Nitric Acid Solutions. Khimiya drevesiny, 1980, no. 5, pp. 53–59. (In Russ.).
- Habarov U.G., Lakhmanov D.E. Depolymerization of Condensed Lignins with Hydrogen Nitrate. Lesnoy Zhurnal = Russian Forestry Journal, 2014, no. 5, pp. 173–181. (In Russ.).
- Khabarov Yu.G., Lakhmanov D.E., Kosyakov D.S., Ul’yanovskii N.V. Studies of Reaction Products of Hydrolytic Lignin with Nitric Acid. Izvesitiya Akademii nauk. Seriya: Khimicheskaya = Russian Chemical Bulletin, 2016, vol. 65, pp. 237–244. https://doi.org/10.1007/s11172-016-1291-5
- Aditiya H.B., Mahlia T.M.I., Chong W.T., Nur H., Sebayang A.H. Second Generation Bioethanol Production: A Critical Review. Renewable and Sustainable Energy Reviews, 2016, vol. 66, pp. 631–653. https://doi.org/10.1016/j.rser.2016.07.015
- Ahmad Z., Paleologou M., Xu C.C. Oxidative Depolymerization of Lignin Using Nitric Acid under Ambient Conditions. Industrial Crops and Products, 2021, vol. 170, art. no. 113757. https://doi.org/10.1016/j.indcrop.2021.113757
- Bergna D., Varila T., Romar H., Lassi U. Activated Carbon from Hydrolysis Lignin: Effect of Activation Method on Carbon Properties. Biomass and Bioenergy, 2022, vol. 159, art. no. 106387. https://doi.org/10.1016/j.biombioe.2022.106387
- Danielewicz D. Nitric Acid-Alkali Two-Stage Pulping of Wheat Straw, Industrial Hemp, and Miscanthus x giganteus. BioResources, 2023, vol. 18, iss. 4, pp. 7629–7644. https://doi.org/10.15376/biores.18.4.7629-7644
- Hemmilä V., Hosseinpourpia R., Adamopoulos S., Eceiza A. Characterization of Wood-Based Industrial Biorefinery Lignosulfonates and Supercritical Water Hydrolysis Lignin. Waste and Biomass Valorization, 2020, vol. 11, pp. 5835–5845. https://doi.org/10.1007/s12649-019-00878-5
- Khan N., Sudhakar K., Mamat R. Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality. Sustainability, 2021, vol. 13, no. 22, art. no. 12374. https://doi.org/10.3390/su132212374
- Khvan A.M., Abduazimov B.B., Abduazimov Kh.A. Nitration of Lignin and Sorptive Properties of the Resulting Products. Chemistry of Natural Compounds, 2002, vol. 38, pp. 471–472. https://doi.org/10.1023/A:1022128130251
- Kozhevnikov A.Yu., Semushina M.P., Podrukhina E.A., Kosyakov D.S. Modification of Hydrolysis Lignin by Hydrogen Peroxide to Obtain an Effective Adsorbent of Highly Toxic Rocket Fuel. Eurasian Chemico-Technological Journal, 2017, vol. 19, no. 2, pp. 155–161. https://doi.org/10.18321/ectj646
- Lo C.-C., Chang Y.-W., Chen Y.-L., Liu Y.-L., Wu H.-S., Sun Y.-M. Lignin Recovery from Rice Straw Biorefinery Solid Waste by Soda Process with Ethylene Glycol as Co-Solvent. Journal of the Taiwan Institute of Chemical Engineers, 2021, vol. 126, pp. 50–57. https://doi.org/10.1016/j.jtice.2021.07.030
- Menezes F.F., Nascimento V.M., Gomes G.R., Rocha G.J.M., Strauss M., Junqueira T.L., Driemeier C. Depolymerization of Enzymatic Hydrolysis Lignin: Review of Technologies and Opportunities for Research. Fuel, 2023, vol. 342, art. no. 127796. https://doi.org/10.1016/j.fuel.2023.127796
- Pan C., Ji Y., Ren S., Lei T., Dong L. Lignin-Derived Activated Carbon as Electrode Material for High-Performance Supercapacitor. Molecules, 2025, vol. 30, no. 1, art. no. 89. https://doi.org/10.3390/molecules30010089
- Popescu C., Dissanayake H., Mansi E., Stancu A. Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet. Sustainability, 2024, vol. 16, no. 23, art. no. 10790. https://doi.org/10.3390/su162310790
- Rabinovich M.L. Lignin By-Products of Soviet Hydrolysis Industry: Resources, Characteristics, and Utilization as a Fuel. Cellulose Chemistry and Technology, 2014, vol. 48, no. 7–8, pp. 613–631.
- Ruwoldt J., Tanase-Opedal M., Syverud K. Ultraviolet Spectrophotometry of Lignin Revisited: Exploring Solvents with Low Harmfulness, Lignin Purity, Hansen Solubility Parameter, and Determination of Phenolic Hydroxyl Groups. ACS Omega, 2022, vol. 7, iss. 50, pp. 46371–46383. https://doi.org/10.1021/acsomega.2c04982
- Sethupathy S., Morales G.M., Gao L., Wang H., Yang B., Jiang J., Sun J., Zhu D. Lignin Valorization: Status, Challenges and Opportunities. Bioresource Technology, 2022, vol. 347, art. no. 126696. https://doi.org/10.1016/j.biortech.2022.126696
- Smith B.C. Organic Nitrogen Compounds X: Nitro Groups, an Explosive Proposition. Spectroscopy, 2020, vol. 35, no. 9, pp. 27–31.
- Smith B.C. The C=O Bond, Part III: Carboxylic Acids. Spectroscopy, 2018, vol. 33, iss. 1, pp. 14–20.
- Vishtal A., Kraslawski A. Challenges in Industrial Applications of Technical Lignins. BioResources, 2011, vol. 6, iss. 3, pp. 3547–3568. http://dx.doi.org/10.15376/biores.6.3.vishtal
- Walker G.M. 125th Anniversary Review: Fuel Alcohol: Current Production and Future Challenges. Journal of the Institute of Brewing, 2011, vol. 117, iss. 1, pp. 3–22. https://doi.org/10.1002/j.2050-0416.2011.tb00438.x
|
Make a Submission
Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025"
|