Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

Alternative Method for the Pine Turpentine Production by Supеrcritical Carbon Dioxide Extraction

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

S. Bakier,  E. Bayko, N.V. Chernaya, V.L. Fleysher

Complete text of the article:

Download article (pdf, 0.5MB )

UDС

665.944.54: 664.046

DOI:

10.17238/issn0536-1036.2016.6.130

Abstract

A method for the pine turpentine production by supеrcritical carbon dioxide extraction is an alternative method, based on the use of organic solvents such as benzine, petroleum-ether, etc. The essence of this method consists in the Pinus sylvestris L. wood sawdust or “mono-lith” treatment by carbon dioxide at a pressure up to 50 MPa and a temperature up to 100 °C. The carbon dioxide dosage in the extraction process is 20...100 kg per 1 kg of raw material, the extraction duration is up to 240 min. The experiments are conducted at the sin-gle- and two-stage separation. The single-stage separation is conducted by the decompres-sion up to 5.3 MPa at a temperature of 27 °C. Two-stage separation is initially conducted at a pressure of 21 MPa at a temperature of 50 °C, then at a pressure up to 5.3 MPa at 27 °C. In all experiments after pressure decreasing CO2 was compressed again and used in a closed loop circuit. The supercritical extraction products of Pinus sylvestris L. wood are the pow-dered rosin and turpentinic extract, the total output of which amounts by 25 % by wood weight. The results of these studies testify the following advantages of this method com-pared to the traditional one: the turpentine obtaining of dry pinewood in a monolithic or particulate form; a lack of change in the structure of the wood raw material; reduction of labour intensity and of the process duration of oleoresin exudation from wood; no environ-mental pollution. The conducted experiments showed that the obtained powdered rosin and turpentinic extract are pure and high-quality products consisting of mainly (up to 56.9 %) rosin acids (isopimaric, pimaric, dehydroabietic, abietic). The introduction of the supercriti-cal extraction of pinewood into production will allow obtaining a significant amount of pure oleoresin materials without high technological costs.

Authors

S. Bakier1, Doctor of Agricultural Sciences, Professor E. Bayko1, Master N.V. Chernaya2, Doctor of Engineering Sciences, Professor V.L. Fleysher2, Candidate of Engineering Sciences, Associate Professor

Affiliation

1Bialystok University of Technology, Pilsudskiy str., 8, Hajn?wka, 17-200, Poland;
e-mail: s.bakier@pb.edu.pl
2Belarusian State Technological University, Sverdlova ul., 13a, Minsk, 220006, Belarus;
e-mail: v_fleisher@list.ru

Keywords

pinewood, extractive, turpentine, rosin acid, extraction, supеrcritical extraction, carbon dioxide.

For citation

Bakier S., Bayko E., Chernaya N.V., Fleysher V.L. Alternative Method for the Pine Turpentine Production by Supеrcritical Carbon Dioxide Extraction. Lesnoy zhurnal (Forestry journal), 2016, no. 6, pp. 130–141. DOI: 10.17238/issn0536-1036.2016.6.130

References


1. Arshadi M., Gref R., Geladi P., Dahlqvist S., Lestander T. The Influence of Raw Material Characteristics on the Industrial Pelletizing Process and Pellet Quality. Fuel Pro-cessing Technology, 2008, vol. 89(12), pp. 1442–1447.
2. Arshadi M., Hunt A.J., Clark J.H. Supercritical Fluid Extraction (SFE) as an Effec-tive Tool in Reducing Auto-Oxidation of Dried Pine Sawdust for Power Generation. RSC Advances, 2012, no. 2, pp. 1806–1809.
3. Brignole E.A. Supercritical Fluid Extraction. Fluid Phase Equilibria, 1986, vol. 29, pp. 133–144.
4. Conde E., Hemming J., Smeds A., Diaz Reinoso B., Moure A., Willfor S., Dominguez H., Paraj? J.C. Extraction of Low-Molar-Mass Phenolics and Lipophilic Com-pounds from Pinus pinaster Wood with Compressed CO2. The Journal of Supercritical Flu-ids, 2013, vol. 81, pp. 193–199.
5. Domingues R.M.A., de Melo M.M.R., Neto C.P., Silvestre A.J.D, Silva C.M. Measurement and Modeling of Supercritical Fluid Extraction Curves of Eucalyptus Globu-lus Bark: Influence of the Operating Conditions Upon Yields and Extract Composition. The Journal of Supercritical Fluids, 2012, vol. 72, pp. 176–185.
6. Eller F.J., Taylor S.L. Pressurized Fluids for Extraction of Cedarwood Oil from Juniperus virginianna. J. Agric. Food Chem., 2004, vol. 52, pp. 2335–2338.
7. Fremont H.A. Extraction of Coniferous Woods with Fluid Carbon Dioxide and Other Supercritical Fluids. Patent US, no. 4308200 A, 1981.
8. Gonz?lez-Vila F.J., Bautista J.M., Guti?rrez A., Del Rio J.C., Gonz?lez A.G. Supercritical Carbon Dioxide Extraction of Lipids from Eucalyptus globulus Wood. Journal of Biochemical and Biophysical Methods, 2000, vol. 43, pp. 345–351.
22. Fedyukov V.I. Forma semennykh cheshuy eli kak diagnosticheskiy priznak re-zonansnoy eli na kornyu [The Spruce Seed Scale Form as a Diagnostic Property of Standing Sounding Spruce]. Lesnoy zhurnal, 1998, no. 1, pp. 23–30.
23. Fedyukov V.I., Saldaeva E.Yu. Rezonansnaya el' dlya rekonstruktsii Bol'shogo teatra [Sounding Spruce for the Bolshoi Theatre Reconstruction]. Lesnoe khozyaystvo, 2011, no. 2, pp. 13–14.
24. Fedyukov V.I., Saldaeva E.Yu., Tsvetkova E.M. Rannyaya diagnostika tekhnich-eskogo kachestva podrosta kak vazhnyy element intensifikatsii lesopol'zovaniya v Rossii [Early Diagnosis of the Undergrowth Technical Quality as an Important Element of the For-est Management Intensification in Russia]. Lesnoy zhurnal, 2012, no. 6, pp. 16–23.
25. Fedyukov V.I., Saldaeva E.Yu., Tsvetkova E.M. Standartizatsiya rezonansnoy drevesiny: neobkhodimo sovershenstvovanie [Sounding Wood Standardization: the Im-provement is Urgent]. Standarty i kachestvo, 2014, no. 4, pp. 54–57.
26. Aoki Tsutomu, Yamada Tadashi. The Viscoelastic Properties of Wood Used for Musical Instruments. Presented Partly on the 21st Meeting of the Japan Wood Research Society. Nagoya, 1971, p. 42.
27. Bl"skova G., Trichkov N., B"rdarov N. Izsledvane na akustichnite pri nadl"zhni i naprechni v"lni na sm"rchova d"rvesina. Sb. nauchni dokladi “50 godini lesotekhnicheski universt”. Sektsiya d"rvoobrabotvane i proizvodstvo na mebeli. Sofia, 2003. pp. 51–54.
28. Bucur V. Determination du module d'Young du bois par une methode dynamique sur carottes de sondage. Annales des sciences forestieres, 1981, vol. 38(2), pp. 283–298.
29. Bucur V. An Ultrasonic Method for Measuring the Elastic Constants of Wood Increment Cores Bored from Living Trees. Ultrasonic, 1983, vol. 21, no. 1, pp. 116–126.
30. Bucur V. Acoustics of Wood. Springer Series in Wood Science. Berlin, 2006, p. 345.
31. Culik M. Drevo a jeho vyuzitie vo vyrobe hudobnych nastrojov. Zvolen, 2013. 93 p.
32. Danihelova A. Relevant Physical Acoustics of Spruce Wood as a Material for Musical Instruments. Proc. of the 8th World Conf. on Timber Engineering. Finland, Lahti, 2004, pp. 491–494.
33. Danihelova A., Culik M. Netradicne vyuzitie jarabiny vtacej na vyrobu kon-strukcnych sucasti violy. Noise and Vibration in Practice: Proc. of the 18th Int. Acoustic Conf. Bratislava, 2013, pp. 27–30.
34. Devide Z. Biljke kayo gradevni material za music instrument. Vijestijazu, 1984, no. 9–10, pp. 36–37.
35. Devide Z. Rezonantno drevo gudackin instrumenata. Tonovi Strucni i prijevodi, 1989, no. 8, pp. 10–18.
36. Droste Hans-Joachin. Impact of Timber Certification on Sustainable Test Man-agement. Part 1. Hamburg, 1996. 52 p.
37. Halachan P., Spisiak D. Vybran? modifik?cie povrchu dreva a ich vplyv na fyzik?lno-akustick?. Proc. 5th Int. Symp. of Regional Coordination Council on Wood Sci. “The Structure, Quality, Properties of Wood-2014”, 22–25 September 2014. Мoscow, 2015, pp. 182–189.
38. Holz D. Zum alterungsverhalten des Werkstoffes Holz-einige Ansichten, Unter-suchungen, Ergebnisse. Holztechnologie, 1981, no. 2, pp. 80–85.
39. Hsu Linda C.-Y., Chauhan Shakti S., King N. Modulus of Elasticity of Stemwood vs Branchwood in 7-Year-Old Pinus Radiata Families. N. Z. J. Forest. Sci., 2003, no. 33(1), pp. 35–46.
40. Huber F. Definition de caracteristiques simples decrivant les arbres et le bois de I'epicea commun (Picea excelsa Link) et pouvant etre prises en flite pour 1'evaluation de la ressourse en bois de resonance (station de iherches sur la gualite des bois). INRA. Centre de recherches forestiers, 1989. 38 p.
41. Ille R. Osetreni a vlastnosti rezonancniho drevo smrku pro mistrovske lisle. Drevo, 1978, no. 33, pp. 133–138.
42. Ille R. Rezonancni drevo smrku pro mistrovske housle. Drevo, 1979, no. 34, pp. 303–304.
43. Kollman F. Holz und Schall-Theorie und Nutzanwendung. Holz-Zentralblatt, 1983, no. 14, pp. 18–35.
44. Lindstrom H., Harris P., Nakada R. Methods for Measuring Stiffness of Young Trees. Holz als Roh- und Werkstoff, 2002, no. 60, pp. 165–167.
45. Lindstrom H., Nakada R., Ralston J. Cell Wall Structure and Wood Properties Determined by Acoustics – a Selective Review. Holz als Roh- und Werkstoff, 2003, vol. 61, no. 5, pp. 321–335.
46. Mandy C., Rosenberg P., Bastion J.C. Non-Destructive Assessment Modulus of Elasticity in Genetic Field Tests in France: 20 IUERO World Congr., Tampere, 7–11 Au-gust, 1995. IAWA Journal, 1995, no. 1, p. 16.
47. Nakamura N. Development of Measuring Young’s Modulus of Planting Stock. Journal of the Japanese Forestry Society, 1997, no. 79(1), pp. 43–48.
48. Nemecek V. K zajisteni proukce rezonancniho dreva. Lesnicka prace, 1979, no. 58(3), pp. 105–109.
49. Parlovcs G., Dolacis J., Antons A., Cirule D. Relationship Between the Anatomi-cal Structure Elements and Physical Properties in the Trunk Transverse and Longitudinal Direction for Wood of Norway Spruce Grooving in Latvia. Ann. Warsaw Univ. Life Sci. Forest. and Wood Technol., 2010, no. 72, pp. 124–128.
50. Rajcan E. Die physikalisch-akustischen Charakteristiken von Holz als Material fur die Production von Streichinstrumenten. Latest Achievements in Research of Wood Structure and Physics. Zvolen, 1990, p. 56.
51. Yoshihara H. Off-Axis Young’s Modulus and Off-Axis Shear Modulus of Wood Measured by Flexural Vibration Tests. Holzforchung, 2012, no. 66(2), pp. 207–213.
Received on April 11, 2016

Alternative Method for the Pine Turpentine Production by Supеrcritical Carbon Dioxide Extraction

 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png