Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425
Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/
|
Aerogels Based on Silicon Dioxide and Lignosulfonate. С. 184-194
|
|
These works are licensed under a Creative Commons Attribution 4.0 International License.
Brovko O.S., Nechaeva M.E., Ivakhnov A.D., Palamarchuk I.A., Gorshkova N.A., Bogdanovich N.I.
Complete text of the article:
Printed copies of the back issues are available in the editorial office of the journal on application to
e-mail: forest@narfu.ru. An electronic version of individual issues and articles can be purchased at Rucont.ru.
UDС
544.774.2
DOI:
10.37482/0536-1036-2024-6-184-194
Abstract
Currently, there is considerable interest in the synthesis of aerogels based on natural polymers. The use of biopolymers is due to their physical and chemical properties, availability, non-toxicity, and the renewable nature of the raw materials needed for their production. These characteristics are possessed by lignosulfonates – sulfonates of the natural biopolymer lignin, formed as a result of sulfite (bisulfite) delignification of wood. Composite aerogel materials attract special attention by combining the properties of both organic and inorganic components. The incorporation of biopolymers into the matrix of nanocomposite aerogels can improve their consumer properties. The aim of this work has been the synthesis of aerogels based on silicon dioxide and sodium lignosulfonate, the study of gelation in the “sodium lignosulfonate – silicon dioxide” system and the assessment of the influence of synthesis conditions on the formation of the structure of aerogel materials based on them. Hydrogels based on components of various chemical natures of sodium lignosulfonate and silicon dioxide, have been obtained by sol-gel synthesis. It has been shown that strong elastic gels are formed at silicon dioxide concentrations above 175 g/l. It has been established that modification of sodium lignosulfonates with silicon dioxide leads to particle aggregation and an increase in their size. Aerogel materials based on sodium lignosulfonate and silicon dioxide, obtained at different molar ratios of componets (the mass fraction of lignosulfonate in the system), have a developed inner surface, the specific surface area is 250...452 m2/g, the total pore volume varies from 0.84 to 2.00 cm3/g. It has been shown that with an increase in the mass fraction of lignosulfonate in the system, the textural characteristics of synthesized composite aerogel materials change: an increase in the specific surface area and pore volume of the obtained materials is observed. With a sodium lignosulfonate content of 6…25 % in the system, the specific surface area of composite aerogels is 250…325 m2/g; with an increase in the proportion of sodium lignosulfonate in the system to 33...50 %, it reaches 357…452 m2/g. The synthesized materials can be used as sorbents, sensor devices, and catalyst carriers.
Authors
Olga S. Brovko1, Candidate of Chemistry, Leading Research Scientist, Assoc. Prof.; ResearcherID: AAF-5387-2019, ORCID: https://orcid.org/0000-0002-1961-7831
Marina E. Nechaeva1*, Junior Research Scientist, Postgraduate Student; ResearcherID: AAL-7068-2020, ORCID: https://orcid.org/0000-0002-6099-1358
Artem D. Ivakhnov1,2, Candidate of Chemistry, Senior Research Scientist; ResearcherID: U-4822-2019, ORCID: https://orcid.org/0000-0003-2822-9192
Irina A. Palamarchuk1, Candidate of Chemistry, Senior Research Scientist; ResearcherID: AAF-5454-2019, ORCID: https://orcid.org/0000-0002-2947-1370
Natalia A. Gorshkova1, Candidate of Chemistry, Senior Research Scientist; ResearcherID: G-2949-2018, ORCID: https://orcid.org/0000-0002-2036-2418
Nikolay I. Bogdanovich2, Doctor of Engineering, Prof.; ResearcherID: A-4662-2013, ORCID: https://orcid.org/0000-0002-5374-2943
Affiliation
1N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Nikolskiy prosp., 20, Arkhangelsk, 163020, Russian Federation; brovko-olga@rambler.ru, m.e.nechaeva@yandex.ru*, ivahnov-tema@yandex.ru, irpalamarchuk@mail.ru, nat.gorshkova@mail.ru
2Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; ivahnov-tema@yandex.ru, n.bogdanovich@narfu.ru
Keywordsbiopolymer, sodium lignosulfonate, silicon dioxide, aerogel, textural characteristics
For citation
Brovko O.S., Nechaeva M.E., Ivakhnov A.D., Palamarchuk I.A., Gorshkova N.A., Bogdanovich N.I. Aerogels Based on Silicon Dioxide and Lignosulfonate. Lesnoy Zhurnal = Russian Forestry Journal, 2024, no. 6, pp. 184–194. (In Russ.). https://doi.org/10.37482/0536-1036-2024-6-184-194
References
- Arapova O.V., Chistyakov A.V., Tsodikov M.V., Moiseev I.I. Lignin – a Renewable Resource of Hydrocarbon Products and Energy Carriers (Review). Neftekhimiya = Petroleum Chemistry, 2020, vol. 60, no. 3, pp. 251–269. (In Russ.). https://doi.org/10.31857/S0028242120030041
- Vishnyakova A.P., Brovko O.S. Application of Ultrafiltration for Purifcation, Concentration and Fractionation of Lignosulphonates of Sulfite Liquor. Ekologiya i promyshlennost’ Rossii = Ecology and Industry of Russia, 2009, no. 8, pp. 37–39. (In Russ.).
- Palamarchuk I.A., Brovko O.S., Bojtsova T.A., Vishnyakova A.P., Makarevich N.A. The Ionic Strength Effect of a Solution on the Complex Formation of Sulfonated Biopolymers of Lignin and Chitosan. Khimija Rastitel’nogo Syr’ja, 2011, no. 2, pp. 57–64. (In Russ.).
- Plakhin V.A., Khabarov Yu.G., Veshnyakov V.A. Synthesis of Colloidal Silver Using Lignosulfonates. Lesnoy Zhurnal = Russian Forestry Journal, 2021, no. 6, pp. 184–195. (In Russ.). https://doi.org/10.37482/0536-1036-2021-6-184-195
- Shindryaev A.V., Lebedev A.E., Menshutina N.V. Preparing Silicon Dioxide Aerogels with Modification of the Inner Surface. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta = Transactions of the Tambov State Technical University, 2023, vol. 29, no. 3, pp. 463–473. (In Russ.).
- Babiarczuk B., Lewandowski D., Kierzek K., Detyna J., Jones W., Kaleta J., Krzak J. Mechanical Properties of Silica Aerogels Controlled by Synthesis Parameters. Journal of Non-Crystalline Solids, 2023, vol. 606, art. no. 122171. https://doi.org/10.1016/j.jnoncrysol.2023.122171
- Brovko O., Palamarchuk I., Bogdanovich N., Ivakhnov А., Chukhchin D., Belousova M., Arkhilin M., Gorshkova N. Composite Aerogel Materials Based on Lignosulfonates and Silica: Synthesis, Structure, Properties. Materials Chemistry and Physics, 2021, vol. 269, art. no. 124768. https://doi.org/10.1016/j.matchemphys.2021.124768
- Brovko O.S., Bogolitsyn K.G., Palamarchuk I.A., Gorshkova N.A., Bogdanovich N.I., Ivakhnov A.D., Belousova M.E. Preparation of Aerogel Composite Materials Based on Lignosulfonates and Silica. Russian Journal of Physical Chemistry B, 2022, vol. 16, pp. 1204–1207. https://doi.org/10.1134/S1990793122070041
- Budtova T., Aguilera D.A., Beluns S., Berglund L., Chartier C., Espinosa E., Gaidukovs S., Klimek-Kopyra A., Kmita A., Lachowicz D., Liebner F., Platnieks O., Rodríguez A., Navarro L.K.T., Zou F., Buwalda S.J. Biorefinery Approach for Aerogels. Polymers, 2020, vol. 12, no. 12, art. no. 2779. https://doi.org/10.3390/polym12122779
- Christina K., Subbiah K., Arulraj P., Krishnan S.K., Sathishkumar P. A Sustainable and Eco-Friendly Approach for Environmental and Energy Management Using Biopolymers Chitosan, Lignin and Cellulose – A Review. International Journal of Biological Macromolecules, 2024, vol. 257, part 2, art. no. 128550. https://doi.org/10.1016/j.ijbiomac.2023.128550
- Jesionowski T., Klapiszewski Ł., Milczarek G. Kraft Lignin and Silica as Precursors of Advanced Composite Materials and Electroactive Blends. Journal of Materials Science, 2014, vol. 49, pp. 1376–1385. https://doi.org/10.1007/s10853-013-7822-7
- Khalil H.P.S.A., Yahya E.B., Jummaat F., Adnan A.S., Olaiya N.G., Rizal S., Abdullah C.K., Pasquini D., Thomas S. Biopolymers Based Aerogels: A Review on Revolutionary Solutions for Smart Therapeutics Delivery. Progress in Materials Science, 2023, vol. 131, art. no. 101014. https://doi.org/10.1016/j.pmatsci.2022.101014
- Khan N.R., Sharmin T., Rashid A.B. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Heliyon, 2024, vol. 10, iss. 1, art. no. e23102. https://doi.org/10.1016/j.heliyon.2023.e23102
- Klapiszewski L., Zietek J., Ciesielczyk F., Siwinska-Stefanska K., Jesionowski T. Magnesium Silicate Conjugated with Calcium Lignosulfonate: In situ Synthesis and Comprehensive Physicochemical Evaluations. Physicochemical Problems of Mineral Processing, 2018, vol. 54(3), pp. 793–802. https://doi.org/10.5277/ppmp1875
- Matinfar M., Nychka J.A. A review of Sodium Silicate Solutions: Structure, Gelation, and Syneresis. Advances in Colloid and Interface Science, 2023, vol. 322, art. no. 103036. https://doi.org/10.1016/j.cis.2023.103036
- Meti P., Mahadik D.B., Lee K.-Y., Wang Q., Kanamori K., Gong Y.-D., Park H.-H. Overview of Organic–Inorganic Hybrid Silica Aerogels: Progress and Perspectives. Materials & Design, 2022, vol. 222, art. no. 111091. https://doi.org/10.1016/j.matdes.2022.111091
- Minju N., Balagopal N.N., Savithri S. Sodium Silicate-Derived Aerogels: Effect of Processing Parameters on Their Applications. RSC Advances, 2021, vol. 11, pp. 15301–15322. https://doi.org/10.1039/D0RA09793D
- Modrzejewska-Sikorska A., Konował E., Klapiszewski Ł., Nowaczyk G., Jurga S., Jesionowski T., Milczarek G. Lignosulfonate-Stabilized Selenium Nanoparticles and Their Deposition on Spherical Silica. International Journal of Biological Macromolecules, 2017, vol. 103, pp. 403–408. https://doi.org/10.1016/j.ijbiomac.2017.05.083
- Patel R., Dhar P., Babaei-Ghazvini A., Dafchahi M.N., Acharya B. Transforming Lignin into Renewable Fuels, Chemicals, and Materials: A Review. Bioresource Technology Reports, 2023, vol. 22, art. no. 101463. https://doi.org/10.1016/j.biteb.2023.101463
- Rafieian F., Dufresne A., Askari G., Rezaei A., Seyedhosseini-Ghaheh H., Jafari S.M. Aerogels as Novel Ingredients: Production, Properties and Applications in Medical, Food and Environmental Sectors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, vol. 687, art. no. 133410. https://doi.org/10.1016/j.colsurfa.2024.133410
- Ruwoldt J. A Critical Review of the Physicochemical Properties of Lignosulfonates: Chemical Structure and Behavior in Aqueous Solution, at Surfaces and Interfaces. Surfaces, 2020, vol. 3, no. 4, pp. 622–648. https://doi.org/10.3390/surfaces3040042
- Schneider W.D.H., Dillon A.J.P., Camassola M. Lignin Nanoparticles Enter the Scene: A Promising Versatile Green Tool for Multiple Applications. Biotechnology Advances, 2021, vol. 47, art. no. 107685. https://doi.org/10.1016/j.biotechadv.2020.107685
- Soorbaghi F.P., Isanejad M., Salatin S., Ghorbani M., Jafari S., Derakhshankhah H. Bioaerogels: Synthesis Approaches, Cellular Uptake, and the Biomedical Applications. Biomedicine & Pharmacotherapy, 2019, vol. 111, pp. 964–975. https://doi.org/10.1016/j.biopha.2019.01.014
- Vera M., Bischof S., Rivas B.L., Weber H., Mahler A.K., Kozich M., Guebitz G.M., Nyanhongo G.S. Biosynthesis of Highly Flexible Lignosulfonate–Starch Based Materials. European Polymer Journal, 2023, vol. 198, art. no. 112392. https://doi.org/10.1016/j.eurpolymj.2023.112392
- Xiong W., Yang D., Alam M.A., Xu J., Li Y., Wang H., Qiu X. Structural Regulation of Lignin/Silica Nanocomposites by Altering the Content of Quaternary Ammonium Groups Grafted into Softwood Kraft Lignin. Industrial Crops and Products, 2020, vol. 144, art. no. 112039. https://doi.org/10.1016/j.indcrop.2019.112039
- Zakis G.F. Functional Analysis of Lignins and Their Derivatives. Riga, Zinatne, 1987. 230 p.
- Zhang Z., Chen Y., Wang D., Yu D., Wu C. Lignin-Based Adsorbents for Heavy Metals. Industrial Crops & Products, 2023, vol. 193, art. no. 116119. https://doi.org/10.1016/j.indcrop.2022.116119
|
Make a Submission
Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2025"
|