Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425
Phone / Fax: (818-2) 21-61-18 Archive |
These works are licensed under a Creative Commons Attribution 4.0 International License. A.A. Lukash, N.P. Lukutsova Complete text of the article:Download article (pdf, 0.8MB )UDС674.02DOI:10.37482/0536-1036-2020-1-146-153AbstractA physical model is developed for heating a set of laminated cellular structure formed from peeled veneer, dependences for determining its thermal conductivity under conditions of non-stationary heat transfer are proposed. It was found that for a package of 11 layers of birch veneer 2 mm thick, the thermal diffusivity is 1.93∙10–6 m2/s. Based on the fundamental theory of thermal conductivity of the wood substance, dependencies are obtained for calculating the duration of bonding of heat-insulating materials of a cellular structure. It has been established that the duration of gluing of a 22 mm thick plywood mesh slab of peeled birch veneer under pressure exposure is 14.5 minutes at a temperature of press plates 110 °C. The thermotechnical characteristics of the new wood-based cellular structure material were determined: the thermal conductivity coefficient of a cellular plywood board with a density of 530 kg/m3 was 0.081 W/(m·K), the strength under static bending of the board parallel to the fibers of the outer layers was 14 MPa, and perpendicular to the fibers was 10 MPa. The use of underutilized soft broadleaved species with low operational properties as a heat-insulating material, where high strength indicators are not required, is justified, since its thermal conductivity is two times lower than that of a similar material – solid plywood board.AuthorsA.A. Lukash, Candidate of Engineering, Assoc. Prof.N.P. Lukutsova, Doctor of Engineering, Prof. AffiliationBryansk State Technological University of Engineering, prosp. Stanke Dimitrova, 3A, Bryansk, 241037, Russian Federation; e-mail: mr.luckasch@yandex.ru, natluk58@mail.ruKeywordsplywood cellular board, hardwood, thermal conductivity, veneer, gluing, heat exchangeFor citationLukash A.A., Lukutsova N.P. Thermal Conductivity of Wood-Based Cellular Structures. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 1, pp. 146–153. DOI: 10.37482/0536-1036-2020-1-146-153References1. Borovikov A.M., Ugolev B.N. Handbook of Wood. Moscow, Lesnaya Promyshlennost’ Publ., 1989. 296 p. (In Russ.)2. Krechetov I.V. Wood Drying. Moscow, Briz Publ., 1997. 500 p. (In Russ.) 3. Levinskiy Yu.B., Rasev A.I., Kosarin A.A, Krasukhina L.P. Wooden House Construction. Saint Petersburg, Strategiya budushchego Publ., 2008. 303 p. (In Russ.) 4. Lukash A.A., Plotnikov V.V., Savenko V.G., Bogatovskiy M.V. New Construction Materials – Relief Plywood and Cellular Plywood Board. Stroitel’nye Materialy [Construction Materials], 2006, no. 12, pр. 38–39. (In Russ.) 5. Lukichev A.V. Prospects of Wood Frame House Construction in Russia. Stroitel’nyye materialy, oborudovaniye, tekhnologii XXI veka [Construction materials, the equipment, technologies of XXI century], 2008, no. 11(118), pр. 44–45. (In Russ.) 6. Savenko V.G., Lukash A.A. Laminated-Wood Material. Patent RF, no. 2252865, 2005. (In Russ.) 7. Lukash A.A. Former of Assembly Line of Stacks of Wood Laminated Material. Patent RF, no. 2298469, 2007. (In Russ.) 8. Savenko V.G., Lukash A.A., Shkil’ K.K. Cellular Plywood Board. Derevoobrabativaushaya promishlennost’ [Woodworking industry], 2006, no. 6, pр. 14–15. (In Russ.) 9. SNiP 23-02-2003. Thermal Performance of the Buildings. Adopted by the Resolution of the State Committee for Construction of the Russian Federation on June 26, 2003 No. 113. Moscow, NIISF RAASN Publ., 2003. 36 p. (In Russ.) 10. SP 23-101-2004. Thermal Performance Design of Buildings. Brought into Force on June 1, 2004. Moscow, NIISF Publ., 2004. 122 p. (In Russ.) 11. Strategy of Development of Forest Complex of the Russian Federation for the Period up to 2020. Approved by the Order of the Ministry of Industry and Trade and the Ministry of Agriculture on October 31, 2008, No. 248/482. (In Russ.) 12. Ugolev B.N. Wood Science with the Basics of Forest Merchandizing: Educational Textbook. Moscow, MSFU Publ., 2007. 340 p. (In Russ.) 13. Gaff M., Gašparík M., Matlák J. 3D Molding of Veneers by Mechanical Means. BioResources, 2015, vol. 10, no. 1, pp. 412–422. 14. Goli G., Cremonini C., Negro F., Zanuttini R., Fioravanti M. PhysicalMechanical Properties and Bonding Quality of Heat Treated Poplar (I-214 Clone) and Ceiba Plywood. iForest, 2014, vol. 8, iss. 5, pp. 687–692. DOI: 10.3832/ifor1276-007 15. Gu H., Zink-Sharp A., Sell J. Hypothesis on the Role of Cell Wall Structure in Differential Transverse Shrinkage of Wood. Holz als Roh- und Werkstoff, 2001, vol. 59, iss. 6, pp. 436–442. DOI: 10.1007/s001070100240 16. Joffre T., Isaksson P., Dumont P.J.J., Rolland du Roscoat S., Sticko S., Orgéas L., Gamstedt E.K. A Method to Measure Moisture Induced Swelling Properties of a Single Wood Cell. Experimental Mechanics, 2016, vol. 56, iss. 5, pp. 723–733. DOI: 10.1007/s11340-015-0119-9 17. Nikulshin S., Semishkur S., Tambi A., Chubinsky A. Strength of Spruce Wood. Internationale Studierenkonferenz “SPRUNGBRETT”, Center for Development and Cooperation CDC, Berner Fachhochschule. Biel, Schweiz, 2015, vol. 0, pp. 133‒138. 18. Pan Y., Zhong Z. Micromechanical Modeling of the Wood Cell Wall Considering Moisture Absorption. Composites Part B: Engineering, 2016, vol. 91, pp. 27–35. DOI: 10.1016/j.compositesb.2015.12.038 19. Wu G.-F., Lang Q., Qu P., Jiang Y.-F., Pu J. Effect of Chemical Modification and Hot-Press Drying on Poplar Wood. BioResources, 2010, vol. 5, iss. 4, pp. 2581–2590. 20. Zamilova A.F. Galikhanov M.F., Safin R.R., Ziatdinov R.R., Mikryukova Y.K. Change of the Properties of Plywood during the Thermomodification of Veneer and the Po larization of the Glue. AIP Conference Proceedings, 2017, vol. 1886, iss. 1, art. 020053. DOI: 10.1063/1.5002950 Received on June 3, 2019 |
Make a Submission
Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024" INDEXED IN:
|
|
|
|
|
|
|
|
|
|
|
|
|