Fraud Warning
We officially declare that NO MONEY from authors and members of the Editorial Board IS CHARGED! A big request to ignore spam e-mails.

Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

Lesnoy Zhurnal

Winter Dormancy Depths in Some Woody Species of the Fabaceae Lindl. Family Introduced in Nizhny Novgorod Region

Версия для печати

E.I. Zakharova

Complete text of the article:

Download article (pdf, 0.7MB )

UDС

630*181

DOI:

10.17238/ issn0536-1036.2019.1.87

Annotation

Cold acclimatization is a complex process that involves extensive modification of plant metabolism. Woody plants of temperate latitudes undergo a kind of preparation for winter conditions in autumn; as a result they become more tolerant to negative temperatures. Plants reach the maximum frost hardiness in the middle of winter, while they lose the acclimatization hardiness by deacclimatization with the increase of temperature in spring. One of the indicators of plant adaptation to the new growth conditions is their ability to dynamically move into a state of dormancy and leave it under the certain changes of external conditions. The research purpose was to study winter dormancy depth in some woody species of the Fabaceae Lindl. family (Robinia pseudoacacia L., Amorpha fruticosa L., Caragana arborescens Lam.) in Nizhny Novgorod region. We used detection method of thermally-induced environmental changes to achieve this purpose. The experiment material was represented by annual shoots of the studied species harvested in the central part of Nizhny Novgorod region. The studies were being carried out from November to February for 5 years. After cutting, the shoots were transferred to laboratory conditions (t = 20 °C), where they were placed in the containers with water. The phenological state of shoots and temperature mode were daily recorded. The studies have shown that the interruption timeframe of dormancy significantly influence the transition of the studied introduced species to active metabolism. It was found that, when the steady negative air temperatures are established in winter, the studied objects form high frost hardi-ness. This is confirmed by the fact that with the artificial interruption of dormancy and warming acceleration from November to February the objects require a significant amount of active temperatures for transition to metabolism. Caragana arborescens Lam. leaves winter dormancy under growing degree-day of 87…136 °С (depending on the calendar periods of dormancy interruption) that is equivalent to 5…7 days of being in warm conditions at an average ambient temperature from 24 to 25 °С. Amorpha fruticosa L. turns to active metabolism in growing degree-day of 255…378 °C; the same happens with Robinia pseudoacacia L. under 198…476 °C. The data obtained during the research update the fundamental principles of factorial ecology through the demonstration of woody species adaptations of the Fabaceae Lindl. family. They can be used for perspective preliminary assessment of their wide cultivation in Nizhny Novgorod region.

Authors

E.I. Zakharova, Candidate of Biological Sciences

Authors job

Nizhny Novgorod State Agricultural Academy, pr. Gagarina, 97, Nizhny Novgorod, 603107, Russian Federation; e-mail: robinia@bk.ru

Keywords

phenology, hardiness, dormancy, tolerance, Caragana arborescens Lam., Amorpha fruticosa L., Robinia pseudoacacia L.

For citation

Zakharova E.I. Winter Dormancy Depths in Some Woody Species of the Fabaceae Lindl. Family Introduced in Nizhny Novgorod Region. Lesnoy Zhurnal [Forestry Journal], 2019, no. 1, pp. 87–95. DOI: 10.17238/ issn0536-1036.2019.1.87

References

1. Beydeman I.N. Metodika izucheniya fenologii rasteniy i rastitel’nykh soobshchestv [Methodology for the Study of Phenology of Plants and Plant Communities]. Novosibirsk, Nauka Publ., 1974. 156 р. (In Russ.)
2. Ivanenko B.I. Fenologiya drevesnykh i kustarnikovykh porod [Phenology of Tree and Shrub Species]. Moscow, Izdatel’stvo sel’skokhozyaystvennoy literatury, 1962. 184 р. (In Russ.)
3. Kishchenko I.T. Sezonnyy rost i razvitiye Juniperus sommunis L. v tayezhnoy zone [Seasonal Growth and Development of Juniperus communis L. in the Taiga Zone]. Lesnoy Zhurnal [Forestry Journal], 2017, no. 3, pp. 31–39. DOI: 10.17238/issn0536-1036.2017.3.31
4. Lebedevа V.P., Sorokina G.A., Gayevskiy N.A. Primeneniye fluorestsentnykh metodov v fitoindikatsii [The Use of Fluorescent Methods in Phytoindication]. Problemy botaniki Yuzhnoy Sibiri i Mongolii: sb. nauch. st. po materialam XV mezhdunar. nauch.-prakt. konf. (Barnaul, 23–26 maya 2016 g.) [Problems of Botany in Southern Siberia and Mongolia: A Collection of Scientific Papers Based on the Materials of the 15th Int. Sci. and Pract. Conf.]. Barnaul, ASU Publ., 2016, pp. 480–485.
5. Libbert E. Fiziologiya rasteniy [Plant Physiology]. Moscow, Mir Publ., 1976. 582 р. (In Russ.)
6. Metodika fenologicheskikh nablyudeniy v botanicheskikh sadakh SSSR [Tech-nique of Phenological Observing in Botanical Gardens of the USSR]. Metodiki introduktsionnykh issledovaniy v Kazakhstane [Techniques of Introduction Research in Kazakhstan]. Alma-Ata, Nauka Publ., 1987, pp. 4–10. (In Russ.)
7. Prokhorov I.A., Potapov S.P. Praktikum po selektsii i semenovodstvu ovoshchnykh i plodovykh kul’tur [Workshop on Selection and Seed Production of Vegetable and Fruit Crops]. Moscow, Kolos Publ., 1975. 304 р. (In Russ.)
8. Radchenko S.I. Temperaturnyye gradiyenty sredy i rasteniya [Temperature Gradients of the Environment and Plant]. Moscow, Nauka Publ., 1966. 390 р. (In Russ.)
9. Arias O., Crabbe J. Les gradients morphogenetiques du rameau dun an des vegetaux ligneux en repos apparent. Donnees complementaires fournies par letude de Prunus avium L. Physiol., 1975, vol. 13, pp. 69–81.
10. Arora R., Rowland L.J., Tanino K. Induction and Release of Bud Dormancy in Woody Perennials: A Science Comes of Age. HortScience, 2003, vol. 38(5), pp. 911–921.
11. Dennis F.G.Jr. Problems in Standardizing Methods for Evaluating the Chilling Requirements for the Breaking of Dormancy in Buds of Woody Plants. HortScience, 2003, vol. 38(3), pp. 347–350.
12. Longstroth М. Winter Dormancy and Chilling in Woody Plants. Michigan State University Extension. 2013. Available at: https://www.canr.msu.edu/ news/winter_dormancy_and_chilling_in_woody_plants (accessed 16.01.2013).
13. Luedeling E., Girvetz Е.Н., Semenov М.А., Brown Р.Н. Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees. PLoS ONE, 2011, vol. 6(5), article no. e20155, pp. 1–13. DOI: 10.1371/journal.pone.0020155
14. Marafon A.C., Citadin I., do Amarante L., Herter F.G., Hawerroth F.J. Chilling Privation during Dormancy Period and Carbohydrate Mobilization in Japanese Pear Trees. Sci. Agric. (Piracicaba, Braz.), 2011, vol. 68, no. 4, pp. 462–468.
15. Pagter M., Andersen U.B., Andersen L. Winter Warming Delays Dormancy Release, Advances Budburst, Alters Carbohydrate Metabolism and Reduces Yield in a Tem-perate Shrub. AoB Plants, 2015, vol. 7, article no. plv024, pp. 1–15. DOI: 10.1093/ aobpla/plv024
16. Pletsers A., Caffarra A., Kelleher С.Т., Donnelly А. Chilling Temperature and Photoperiod Influence the Timing of Bud Burst in Juvenile Betula pubescens Ehrh. and Populus tremula L. Trees. Annals of Forest Science, 2015, vol. 72, iss. 7, pp. 941–953. DOI: 10.1007/s13595-015-0491-8
17. Saure M.C. Dormancy Release in Deciduous Fruit Trees. Horticultural Reviews: Volume 7. Ed. by J. Janick, Westport, CT, Avi Publishing Company, Inc., 1985, pp. 239–300.
18. Way D.A. Tree Phenology Responses to Warming: Spring Forward, Fall Back? Tree Physiology, 2011, vol. 31, iss. 5, pp. 469–471. DOI: 10.1093/treephys/tpr044

Received on May 14, 2018


Winter Dormancy Depths in Some Woody Species of the Fabaceae Lindl. Family Introduced in Nizhny Novgorod Region

 

INDEXED IN: