Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

Needle-Like Leaf Organs of Conifers. Part I. Modeling the Needle Cross-Section Perimeter. C. 73-91

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

Natal’ya V. Tarasov, Natal’ya V. Gerling 

Complete text of the article:

Download article (pdf, 1.5MB )

UDС

582.475:581.45:57.087(470.13)

DOI:

10.37482/0536-1036-2024-3-73-91

Abstract

Despite the availability of measuring systems for estimating the surface area of leaf organs of higher plants, the need for simple standard methods for determining this indicator area remains relevant for plant physiologists. The methods for estimating the surface area of needle-like leaf organs of conifers, based on the geometry of an individual needle rest on the general principle of calculating the needle surface area as the product of its length by the perimeter of its cross-section. This makes the cross-section perimeter one of the most important parameters needed to characterize the needle surface area. The strong variability of this parameter depending on the species necessitates the development of individual models of the cross-section of individual needles. The aim of this study has been to create a universal model for estimating the needle cross-section perimeter, irrespective of the tree species. For the practical implementation of the aim, a method was proposed for estimating the perimeter of the needle cross-section, based on the well-known fact that any closed line is transformable into an equivalent circle, while the length of the closed line does not change. The perimeter of the equivalent circle can be related to the parameters of the geometric figure before the transformation. This approach allows us to relate the width and thickness of the needle cross-section to its perimeter. The developed universal model of the needle cross-section has been verified on cross-sections of Siberian fir (Abies sibirica L.) and common juniper (Juniperus communis L.) needles. The samples of needles of these woody plants have been collected from a bilberry-sphagnum spruce forest in the boreal zone of the north-east of the European part of Russia (Knyazhpogostkiy district, the Komi Republic). Statistical analysis has shown the significance and adequacy of the model. It can be used to assess the perimeter of coniferous needles, irrespective of their species. In this case, the accuracy of perimeter estimation is comparable to the accuracy of direct perimeter measurement by the piecewise linear approximation method.

Authors

Sergey I. Tarasov, Candidate of Biology; ResearcherID: A-7112-2016, ORCID: https://orcid.org/0000-0003-2081-5090
Natal’ya V. Gerling*, Candidate of Biology; ResearcherID: Q-2273-2015, ORCID: https://orcid.org/0000-0001-5224-8452

Affiliation

Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, ul. Kommunisticheskaya, 28, Syktyvkar, 167982, Russian Federation; tarasov@ib.komisc.rugerling@ib.komisc.ru*

Keywords

conifers, needle surface area, needle cross-section perimeter, equivalent radius, modelling

For citation

Tarasov S.I., Gerling N.V. Needle-Like Leaf Organs of Conifers. Part I. Modeling the Needle Cross-Section Perimeter. Lesnoy Zhurnal = Russian Forestry Journal, 2024, no. 3, pp. 73–91. (In Russ.). https://doi.org/10.37482/0536-1036-2024-3-73-91

References

  1. Utkin A.I., Ermolova L.S., Utkina I.A. Surface Area of Forest Plants: Essence, Parameters, Use. Moscow, Nauka Publ., 2008. 292 p. (In Russ.).
  2. Tsel’niker Yu.L. A Simplified Method for Determining the Surface of Pine and Spruce Needles. Lesovedenie = Russian Journal of Forest Science, 1982, no. 4, pp. 85–88. (In Russ.).
  3. Tsel’niker Yu.L., El’china L.M. A Simplified Method for Determining the Surface Area of Larch Needles. Lesovedenie = Russian Journal of Forest Science, 1996, no. 3, pp. 86–91. (In Russ.).
  4. Esau K. Anatomy of Seed Plants. Moscow, Mir Publ., 1980, book 2. 400 p. (In Russ.).
  5. Bond-Lamberty B., Wang C., Gower S.T. The Use of Multiple Measurement Techniques to Refine Estimates of Conifer Needle Geometry. Canadian Journal of Forest Research, 2003, vol. 33, no. 1, pp. 101–105. https://doi.org/10.1139/x02-166
  6. Bertalanffy von L. Basic Concepts in Quantitative Biology of Metabolism. Helgoländer Wissenschaftliche Meeresuntersuchungen, 1964, vol. 9, pp. 5–37. https://doi.org/10.1007/BF01610024
  7. Bookstein F.L. Morphometric Tools for Landmark Data. Geometry and Biology. Cambridge University Press, 1992. 435 p. https://doi.org/10.1017/CBO9780511573064
  8. Courant R., Robbins H. What is Mathematics? An Elementary Approach to Ideas and Methods. Oxford University Press, 1996. 592 p. https://doi.org/10.1093/oso/9780195105193.001.0001
  9. Dewitte K., Fierens C., Stöckl D., Thienpont L.M. Application of the BlandAltman Plot for Interpretation of Method-Comparison Studies: a Critical Investigation of its Practice. Clinical Chemistry, 2002, vol. 48, iss. 5, pp. 799–801. https://doi.org/10.1093/clinchem/48.5.799
  10. Giavarina D. Understanding Bland Altman Analysis. Biochemia Medica, 2015, vol. 25, iss. 2, pp. 141–151. http://dx.doi.org/10.11613/BM.2015.015
  11. Gould S.J. Allometry and Size in Ontogeny and Phylogeny. Biological Reviews, 1966, vol. 41, pp. 587–640. https://doi.org/10.1111/j.1469-185X.1966.tb01624.x
  12. Katsuno M., Hozumi K. Needle Area Measurement by the Cut Method and Estimation of Specific Leaf Area in Cryptomeria japonica. Ecological Research, 1987, vol. 2, pp. 203–213. https://doi.org/10.1007/BF02349774
  13. Kerner H., Gross E., Koch W. Structure of the Assimilation System of a Dominating Spruce Tree (Picea abies (L.) Karst.) of Closed Stand: Computation of Needle Surface Area by Means of a Variable Geometric Needle Model. Flora, 1977, vol. 166, iss. 5, pp. 449–459. https://doi.org/10.1016/S0367-2530(17)32165-5
  14. Krüssmann G. Die Nadelgehölze. Eine Nadelholzkunde für die Praxis. 3rd ed., revised. Berlin, Paul Parrey Verlag, 1979. 264 p. (In Germ.).
  15. Krüssmann G. Handbuch der Nadelgehölze. Berlin, Hamburg, Paul Parey Verlag, 1972. 366 p. (In Germ.).
  16. Lin J., Sampson D.A., Deckmyn G., Ceulemans R. Significant Overestimation of Needle Surface Area Estimates Based on Needle Dimensions in Scots Pine (Pinus sylvestris). Canadian Journal of Botany, 2002, vol. 80, no. 9, pp. 927–932. https://doi.org/10.1139/b02-081
  17. Maertens R., Rousseau R. Een Nieuwe Benaderde Formule voor de Omtrek van een Ellips. Wiskunde & Onderwijs, 2000, vol. 26, pp. 249–258. (In Dutch).
  18. Mosimann J.E. Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions. Journal of the American Statistical Association, 1970, vol. 65, iss. 330, pp. 930–945. http://dx.doi.org/10.1080/01621459.1970.10481136
  19. NCSS Statisticfl Software. Chapter 204. Bland-Altman Plot and Analysis. Available at: https://www.ncss.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Bland-Altman_Plot_and_Analysis.pdf (accessed: 18.04.22)
  20. Pólya G., Szegö G. Isoperimetric Inequalities in Mathematical Physics. Princeton, Princeton University Press, vol. 27, 1951. 279 p. https://doi.org/10.1515/9781400882663
  21. Zwillinger D. CRC Standard Mathematical Tables and Formulas. Chapman and Hall/CRC Press, 2002. 928 p. https://doi.org/10.1201/9781420035346


 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png