Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Кинетические закономерности процесса водно-щелочного гидролиза березовой коры в СВЧ-поле. С. 179–190

Версия для печати

Е.Н. Коптелова, Н.А. Кутакова, С.И. Третьяков, А.В. Фалева

Рубрика: Химическая переработка древесины

Скачать статью (pdf, 0.6MB )

УДК

630*86(045)

DOI:

10.37482/0536-1036-2022-3-179-190

Аннотация

Березовая кора состоит из бересты (корки) и луба. Береста содержит до 50 % экстрактивных веществ и служит сырьем для получения ценных биологически активных веществ, в том числе бетулина. Отличительной чертой структуры бересты является наличие поперечно-сшитого полимера – суберина. Его мономеры – субериновые кислоты – нашли применение в производстве смазок и масел, инсектицидов, фунгицидов, полимеров, полиэфиров, покрытий и др. Общепринятым способом выделения солей субериновых кислот из бересты является ее исчерпывающий гидролиз водным или водно-спиртовым раствором гидроксида калия или натрия. Нами предложена активация сырья в процессе гидролиза путем использования электромагнитного поля сверхвысоких частот (СВЧ-гидролиз). Извлечение суберина из бересты – одновременно химический и массообменный процесс. Образующиеся при гидролизе соли субериновых кислот диффундируют к поверхности частиц бересты и переходят в гидролизат. Лимитирующей стадией массообмена при гидролизе бересты становится внутренняя диффузия в порах (массопроводность). Анизотропия структуры бересты затрудняет математическое описание кинетики массопереноса в диффузионном процессе. Процесс внутренней диффузии при СВЧ-гидролизе характеризуется регулярным режимом начиная с 4-й минуты. Установлены кинетические закономерности данного процесса, определена эффективность диффузии в тангенциальном и продольном направлениях. С увеличением размеров частиц бересты и по длине (тангенциальное направление), и по ширине (продольное направление) происходит увеличение скорости процесса гидролиза и степени извлечения суберина. Определены коэффициенты внутренней диффузии при СВЧ-гидролизе коры. Наибольшее значение получено для фракции с размером частиц 3…4,5 мм (береста), наименьшее – для фракции менее 1 мм (луб). Показано, что для повышения выхода суберина из березовой коры после ее измельчения следует отделять мелкую фракцию – луб, бересту важно резать вдоль волокна.

Сведения об авторах

Е.Н. Коптелова, канд. техн. наук, доц.; Researcher ID: AAI-4768-2020,
ORCID: https://orcid.org/0000-0002-0500-0582
Н.А. Кутакова, канд. техн. наук, доц.; Researcher ID: T-1150-2019,
ORCID: https://orcid.org/0000-0001-8195-2115
С.И. Третьяков, канд. техн. наук, проф.; ResearcherID: S-2192-2019,
ORCID: https://orcid.org/0000-0003-1783-5349
А.В. Фалева, мл. науч. сотр.; Researcher ID: AAZ-1879-2020,
ORCID: https://orcid.org/0000-0002-8565-6871
Северный (Арктический) федеральный университет им. М.В. Л омоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002; elen-koptelova@yandex.run.kutakova@narfu.ru, s.tretyakov@narfu.ru, a.bezumova@narfu.ru

Ключевые слова

березовая кора, береста, суберин, СВЧ-поле, водно-щелочной гидролиз, коэффициент диффузии

Для цитирования

Коптелова Е.Н., Кутакова Н.А., Третьяков С.И., Фалева А.В. Кинетические закономерности процесса водно-щелочного гидролиза березовой коры в СВЧ-поле // Изв. вузов. Лесн. журн. 2022. № 3. С. 179–190. https://doi.org/10.37482/0536-1036-2022-3-179-190

Литература

  1. А.с. 382657 ССС Р, МКИ 1 С 08h 5/04. Способ выделения бетулина и суберина: № 1472003/23-4: заявл. 14.08.1970: опубл. 23.05.1973 / Т.И. Федорищев, В.Г. Калайков.
    Fedorishchev T.I., Kalaykov V.G. Method for Isolation of Betulin and Suberin. Certificate of Authorship USSR, no. SU 382657 A1, 1973. (In Russ.).

  2. Безумова А.В., Третьяков С.И., Кутакова Н.А., Коптелова Е.Н. Извлечение субериновых кислот из бересты при воздействии СВЧ-поля // Химия растит. сырья. 2018. № 1. С. 21–28.
    Bezumova A.V., Tret’iakov S.I., Kutakova N.A., Koptelova E.N. Extracting Suberin Acids from Birch Bark when Exposed to a Microwave Field. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2018, no. 1, рр. 21–28. (In Russ.). https://doi.org/10.14258/jcprm.2018012560

  3. Кислицын А.Н. Экстрактивные вещества бересты: выделение, состав, свойства, применение. Обзор // Химия древесины. 1994. № 3. С. 3–28.
    Kislitsyn A.N. Extractive Substances of Birch Bark: Isolation, Composition, Properties and Application. Review. Khimiya drevesiny, 1994, no. 3, рр. 3–28. (In Russ.).

  4. Коптелова Е.Н., Кутакова Н.А., Третьяков С.И. Исследование кинетики массопереноса в процессе экстрагирования бересты // Изв. вузов. Лесн. журн. 2013. № 4. С. 119–128.
    Koptelova E.N., Kutakova N.A., Tretyakov S.I. Study of Mass Transfer Kinetics during Birch Bark Extraction. Lesnoy Zhurnal = Russian Forestry Journal, 2013, no. 4, pp. 119–128. (In Russ.). http://lesnoizhurnal.ru/upload/iblock/22b/x5.pdf

  5. Коптелова Е.Н., Кутакова Н.А., Третьяков С.И. Извлечение экстрактивных веществ и бетулина из бересты при воздействии СВЧ-поля // Химия растит. сырья. 2013. № 4. С. 159–164.
    Koptelova E.N., Kutakova N.A., Tretyakov S.I. Removing the Extractives and Betulin from Birch Bark Exposed Microwave Field. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2013, no. 4, рр. 159–164. (In Russ.). https://doi.org/10.14258/jcprm.1304159

  6. Кузнецов Б.Н., Левданский В.А., Еськин А.П., Полежаева Н.И. Выделение бетулина и суберина из коры березы, активированной в условиях «взрывного автогидролиза» // Химия растит. сырья. 1998. № 1. С. 5–9.
    Kuznetsov B.N., Levdanskiy V.A., Es’kin A.P., Polezhayeva N.I. Isolation of Betulin and Suberin from Birch Bark Activated in Conditions of “Explosive Autohydrolysis”. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 1998, no. 1, рр. 5–9. (In Russ.).

  7. Кутакова Н.А., Богданович Н.И., Селянина С.Б., Коптелова Е.Н., Коровкина Н.В. Лабораторный практикум по технологии биологически активных веществ и углеродных адсорбентов: в 2 ч. Ч. 2. Анализ БАВ. Архангельск: СА ФУ, 2015. 114 с.
    Kutakova N.A., Bogdanovich N.I., Selyanina S.B., Koptelova E.N., Korovkina N.V. Laboratory Workshop on the Technology of Biologically Active Substances and Carbon Adsorbents: 2 Parts. Part 2. Analysis of BAS. Arkhangelsk, NarFU Publ., 2015. 114 p. (In Russ.).

  8. Макаревич Н.А., Третьяков С.И., Богданович Н.И. К инетическая модель массопереноса на межфазных границах с участием компонентов растительного сырья // Физикохимия поверхности и защита материалов. 2019. Т. 55, № 6. С. 601–609.
    Makarevich N.A., Tret’yakov S.I., Bogdanovich N.I. Kinetic Model of Mass Transfer at Interfaces with Components of Plant Products. Fizikokhimiya poverkhnosti i zashchita materialov = Protection of Metals and Physical Chemistry of Surfaces, 2019, vol. 55, no. 6, pp. 601–609. (In Russ.). https://doi.org/10.1134/S0044185619050164

  9. Макаревич Н.А., Богданович Н.И., Третьяков С.И., Коптелова Е.Н. Кинетическая модель межфазовых процессов с участием компонентов растительного сырья // Химия растит. сырья. 2014. № 4. С. 251–262.
    Makarevich N.A., Bogdanovich N.I., Tretiakov S.I., Koptelova E.N. Kinetic Model of Interphase Processes with Participation of Components of Plant Raw Materials. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2014, no. 4, pp. 251–262. (In Russ.). https://doi.org/10.14258/jcprm.201404208

  10. Патент 2264411 РФ, C1, МПК C07J 53/00 (2006.01), C07J 63/00 (2006.01). Способ получения бетулина: № 2004122661/04: заявл. 23.07.2004: опубл. 20.11.2005 / С.А. Кузнецова, Б.Н. Кузнецов, А.Г. Михайлов, В.А. Левданский.
    Kuznetsova S.A., Kuznetsov B.N., Mihajlov A.G., Levdanskij V.A. Method for Production of Betulin. Patent RF no. RU 2 264 411 C1, 2005. (In Russ.).

  11. Патент 2618892 РФ, С1 A61K 36/185(2006.01), B01D 11/02(2006.01), A61K 129/00(2006.01). Способ комплексной переработки коры березы: № 2016120506: заявл. 25.05.2016: опубл. 11.05.2017 / Б.Н. Кузнецов, И.Г. Судакова, С.А. Кузнецова, Л.И. Гришечко, Г.П. Скворцова, Е.В. Веприкова, В.А. Левданский.
    Kuznetsov B.N., Sudakova I.G., Kuznetsova S.A., Grishechko L.I., Skvortsova G.P., Veprikova E.V., Levdanskij V.A. Method for Complex Processing of Birch Bark. Patent RF no. RU 2 618 892 C1, 2017. (In Russ.).

  12. Судакова И.Г., Гарынцева Н.В., Кузнецов Б.Н. Получение древесных плитных материалов с использованием связующих на основе суберина березовой коры // Химия растит. сырья. 2011. № 3. С. 65–68.
    Sudakova I.G., Garyntseva N.V., Kuznetsov B.N. Production of Wood Fiber Boards with the Use of Birch Bark Suberin-Derived Binding Agents. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2011, no. 3, pp. 65–68. (In Russ.).

  13. Судакова И.Г., Иванов И.П., Иванченко Н.М., Кузнецов Б.Н. Защитные составы для древесины на основе суберина коры березы // Химия растит. сырья. 2005. № 1. С. 59–63.
    Sudakova I.G., Ivanov I.P., Ivanchenko N.M., Kuznetsov B.N. Protective Compositions for Wood Based on Birch Bark Suberin. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2005, no. 1, pp. 59–63. (In Russ.).

  14. Судакова И.Г., Кузнецов Б.Н., Иванов И.П., Иванченко Н.М. Получение пленкообразующих материалов из суберина коры березы повислой // Химия растит. сырья. 2004. № 1. С. 31–34.
    Sudakova I.G., Kuznetsov B.N., Ivanov I.P., Ivanchenko N.M. Film-Forming Materials Production from Birch Bark Suberin. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2004, no. 1, pp. 31–34. (In Russ.).

  15. Третьяков С.И., Коптелова Е.Н., Кутакова Н.А., Владимирова Т.М., Богданович Н.И. Бетулин: получение, применение, контроль качества: моногр. Архангельск: СА ФУ, 2015. 180 с.
    Tret’yakov S.I., Koptelova E.N., Kutakova N.A., Vladimirova T.M., Bogdanovich N.I. Betulin: Receiving, Use and Quality Control. Arkhangelsk, NArFU Publ., 2015. 180 p. (In Russ.).

  16. Черняева Г.Н., Долгодворова С.Я., Бондаренко С.М. Экстрактивные вещества березы. Красноярск: ИЛ иД, 1986. 123 с.
    Chernyayeva G.N., Dolgodvorova S.Ya., Bondarenko S.M. Extractive Substances of Birch. Krasnoyarsk, ILiD Publ., 1986. 123 p. (In Russ.).

  17. Armbruste M., Mönckedieck M., Scherließ R., Daniels R., Wahl M.A. Birch Bark Dry Extract by Supercritical Fluid Technology: Extract Characterisation and Use for Stabilisation of Semisolid Systems. Applied Sciences, 2017, vol. 7, iss. 3, art. 292. https://doi.org/10.3390/app7030292

  18. Ekman R. The Suberin Monomers and Triterpenoids from the Outer Bark of Betula verrucosa Ehrh. Holzforschung, 1983, vol. 37, iss. 4, pp. 205–211. https://doi.org/10.1515/hfsg.1983.37.4.205

  19. Ferreira R., Garcia H., Sousa A.F., Freire C.S.R., Silvestre A.J.D., Rebelo L.P.N., Pereira C.S. Isolation of Suberin from Birch Outer Bark and Сork Using Ionic Liquids: A New Source of Macromonomers. Industrial Crops and Products, 2013, vol. 44, pp. 520–527. https://doi.org/10.1016/j.indcrop.2012.10.002

  20. Gandini A., Neto C.P., Silvestre A.J.D. Suberin: A Promising Renewable Resource for Novel Macromolecular Materials. Progress in Polymer Science, 2006, vol. 31, iss. 10, pp. 878–892. https://doi.org/10.1016/j.progpolymsci.2006.07.004

  21. Hamanaka S., Suzuki A., Hara M., Nishio H., Otsuka F., Uchida Y. Human Epidermal Glucosylceramides are Major Precursors of Stratum Corneum Ceramides. Journal of Investigative Dermatology, 2002, vol. 119, iss. 2, pp. 416–423. https://doi.org/10.1046/j.1523-1747.2002.01836.x

  22. Kolattukudy P.E. Biopolyester Membranes of Plants: Cutin and Suberin. Science, 1980, vol. 208, no. 4447, pp. 990–1000. https://doi.org/10.1126/science.208.4447.990

  23. Krasutsky P.A., Carlson R.M., Kolomitsyn I.V. Isolation of Natural Products from Birch Bark. Patent US no. US 6,768,016 B2, 2004.

  24. Krasutsky P.A., Carlson R.M., Nesterenko V.V., Kolomitsyn I.V., Edwardson C.F. Birch Bark Processing and the Isolation of Natural Products from Birch Bark. Patent US no. US 2005/O158414 A1, 2005.

  25. Mandal V., Mohan Y., Hemalatha S. Microwave Assisted Extraction – an Innovative and Promising Extraction Tool for Medicinal Plant Research. Pharmacognosy Reviews, 2007, vol. 1, iss. 1, pp. 7–18.

  26. Microwave-Assisted Extraction for Bioactive Compounds. Ed. by F. Chemat, G. Cravotto. New York, Springer, 2013. 238 p. https://doi.org/10.1007/978-1-4614-4830-3

  27. Pinto P.C.R.O., Souza A.F., Silvestre A.J.D., Neto C.P., Gandini A., Eckerman C., Holmbom B. Quercus suber and Betula pendula Outer Barks as Renewable Sources of Oleochemicals: A Comparative Study. Industrial Crops and Products, 2009, vol. 29, iss. 1, pp. 126–132. https://doi.org/10.1016/j.indcrop.2008.04.015

  28. Pollard M., Beisson F., Li Y., Ohlrogge J.B. Building Lipid Barriers: Biosynthesis of Cutin and Suberin. Trends in Plant Science, 2008, vol. 13, iss. 5, pp. 236–246. https://doi.org/10.1016/j.tplants.2008.03.003

  29. Rižikovs J., Zandersons J., Paže A., Tardenaka A., Spince B. Isolation of Suberinic Acids from Extracted Outer Birch Bark Depending on the Application Purposes. Baltic Forestry, 2014, vol. 20, no. 1, pp. 98–105.

  30. Schweizer P., Felix G., Buchala A., Müller C., Métraux J.-P. Perception of Free Cutin Monomers by Plant Cells. The Plant Journal, 1996, vol. 10, iss. 2, pp. 331–341. https://doi.org/10.1046/j.1365-313X.1996.10020331.x

  31. Von Wettstein-Knowles P.M. Waxes, Cutin, and Suberin. Lipid Metabolism in Plants. Ed. by T.S. Moore. CRC Press, 2018, pp. 127–166. https://doi.org/10.1201/9781351074070-5

  32. Yang Y., Lu W., Zhang X., Xie W., Cai M., Gross R.A. Two-Step Biocatalytic Route to Biobased Functional Polyesters from ω-Carboxy Fatty Acids and Diols. Biomacromolecules, 2010, vol. 11, no. 1, pp. 259–268. https://doi.org/10.1021/bm901112m