Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18
E-mail: forest@narfu.ru
http://lesnoizhurnal.ru/en/

RussianEnglish



Archive

The Current State of Conifer Species Breeding and Seed Production. P. 9–37

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

B.V. Raevsky, R.V. Ignatenko, E.V. Novichonok, V.M. Prokopiuk, K.K. Kuklina

Complete text of the article:

Download article (pdf, 0.8MB )

UDС

630*233(470.1/.2)

DOI:

10.37482/0536-1036-2022-6-9-37

Abstract

The article analyzes and summarizes information on breeding and seed production of the main forest-forming and commercial species for the countries of Northern Europe and Russia: Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst). It is shown that in the last 40–50 years Sweden and Finland have completed the first (primary) cycle of plus-tree breeding, and the second cycle is being actively pursued. In terms of seed production, this means a gradual replacement of the 1st generation forest seed orchards with the forest seed orchards of enhanced genetic value (of 1.5 and 2nd generation). By the middle of the 21st century, the productivity of new artificial stands is expected to increase by 20–25 % in terms of stem wood stock due to breeding work. Successful and quite large-scale works were undertaken in plus trees phenotypic breeding and forest seed orchards (1st generation) planting in some regions of European Russia in the last third of the 20th century. However, even this first (primary) cycle of plus-tree breeding has not been fully completed. The latter makes it possible to lay out the necessary areas of multiplicative populations of increased genetic value – forest seed orchards of the 1.5 generation. Although this is impossible to achieve in many subjects of the Northwestern Federal District due to the insufficient number of selected plus trees and, most importantly, the extremely small area of progeny tests. At present, the vast majority of initially selected plus trees were not genetically tested, which hinders the possibility of further development of the plus-tree breeding system. Russia also lacks special breeding zoning of the main forest-forming species, providing a spatial organization of breeding work and the use of seeds from forest seed orchards. A federal program for the preservation and sustainable management of forest genetic resources of the Russian Federation, together with a number of subprograms for genetic research and breeding of the most important forest-forming species, should be developed to achieve progress in this direction, considering current advances in molecular genetics and biotechnology.

Authors

Boris V. Raevsky1,2*, Doctor of Agriculture; ResearcherID: K-6424-2018, ORCID: https://orcid.org/0000-0002-1315-8937
Roman V. Ignatenko2, Candidate of Biology; ResearcherID: A-7616-2019, ORCID: https://orcid.org/0000-0001-9608-9465
Elena V. Novichonok1,2, Candidate of Biology; ResearcherID: J-4819-2018, ORCID: https://orcid.org/0000-0003-3676-9869
Victoria M. Prokopiuk2, Postgraduate Student; ORCID: https://orcid.org/0000-0002-5133-3230
Kira K. Kuklina2, Postgraduate Student; ORCID: https://orcid.org/0000-0001-5567-9549

Affiliation

1Forest Research Institute of Karelian Research Centre, Russian Academy of Sciences, ul. Pushkinskaya, 11, Petrozavodsk, Republic of Karelia, 185000, Russian Federation; raevsky@krc.karelia.ru*, enovichonok@inbox.ru
2Department of Multidisciplinary Scientific Research of Karelian Research Centre, Russian Academy of Sciences, ul. Pushkinskaya, 11, Petrozavodsk, Republic of Karelia, 185000, Russian Federation; raevsky@krc.karelia.ru, ocean-9@mail.ruenovichonok@inbox.ruviktoria_pro@krc.karelia.ru, kuklinovskaya@mail.ru

Keywords

forest tree breeding, forest seed orchards, progeny tests, breeding seed production, plus trees, forest breeding in Sweden, forest breeding in Finland, forest breeding in Russia, Northwestern Federal District, Pinus sylvestris, Picea abies

Funding

Financial support of the research was provided by the federal budget for the state assignment of the Forest Research Institute and the Department of Multidisciplinary Scientific Research of Karelian Research Centre, Russian Academy of Sciences with partial support of the World-class Scientific and Educational Center “Russian Arctic: New Materials, Technologies and research Methods”.

For citation

Raevsky B.V., Ignatenko R.V., Novichonok E.V., Prokopiuk V.M., Kuklina K.K. The Current State of Conifer Species Breeding and Seed Production. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 6, pp. 9–37. (In Russ.). https://doi.org/10.37482/0536-1036-2022-6-9-37

References

  1. Avrov F.D. Ecological and Genetic Bases of Stability of Larch Populations and Plantation Cultivation in Siberia: Dr. Agric. Sci. Diss. Abs. Krasnoyarsk, 1998. 36 p. (In Russ.).

  2. Venyalyaynen M. Long-Term Breeding Program for Scots Pine in Finland. Forest Genetics, Breeding and Physiology of Woody Plants: Proceedings of the International Symposium, September 25–30, 1989, Voronezh. Moscow, 1990, pp. 9–16. (In Russ.).

  3. Grozdova N.B., Kabanova E.D. Results of Hybridization Work with Fir and Douglad Fir in the Ivanteevsky Dendrological Garden of VNIILM. Development of the Foundations of Tree Breeding Systems: Abstracts of the Meeting Reports. Part II. Riga. 1981, pp. 24–27. (In Russ.).

  4. Koski V. Seed Zoning in Finland. Forest Regeneration in the Northern Part of Europe: Proceedings of the Finnish-Russian Seminar. September 28 – October 2, 1998. Bull. For. Res. Inst. Finland. Vantaa, 2000, no. 772, pp. 127–132. (In Russ.).

  5. Laur N.V. Forest Genetic and Breeding Complex of Karelia (Creation Features, State Analysis and Development Scientific Rationale): Dr. Agric. Sci. Diss. Petrozavodsk, 2012. 429 p. (In Russ.).

  6. Forest Plan of the Arkhangelsk Region: Approved by the Decree of the Governor of the Arkhangelsk Region Dated December 14, 2018 No. 116-y. https://docs.cntd.ru/document/462641881 (In Russ.).

  7. Forest Plan of the Vologda Region: Approved by the Order of the Governor of the Vologda Region Dated November 30, 2018 No. 4807-р.  https://docs.cntd.ru/document/444924654 (дата обращения: 11.10.22). (In Russ.).

  8. Forest Plan of the Kaliningrad Region: Approved by the Decree of the Governor of the Kaliningrad Region Dated March 30, 2009 No. 27. http://publication.pravo.gov.ru/Document/View/3900201812310001 (In Russ.).

  9. Forest Plan of the Leningrad Region for 2019–2028: Approved by the Resolution of the Governor of the Leningrad Region Dated December 25, 2018 No. 75-пг. https://lenobl.ru/media/docs/15987/Лесной%20план%20Ленинградской%20области.pdf (In Russ.).

  10. Forest Plan of the Murmansk Region: Approved by the Resolution of the Governor of the Murmansk Region Dated March 20, 2019 No. 29-ПГ. https://mpr.gov-murman.ru/documents/lesplan/ (In Russ.).

  11. Forest Plan of the Novgorod Region: Approved by the Decree of the Governor of the Novgorod Region Dated December 28, 2018 No. 576. https://priroda.novreg.ru/tinybrowser/files/dokumenty/lesnoi_plan/01/lesplan-2019.pdf (In Russ.).

  12. Forest Plan of the Pskov Region: Approved by the Decree of the Governor of the Pskov Region Dated December 29, 2018 No. 81-УГ. https://priroda.pskov.ru/lesnoy-plan (In Russ.).

  13. Forest Plan of the Republic of Karelia: Approved by the Order of the Head of the Republic of Karelia Dated December 24, 2018 No. 731-р. https://gov.karelia.ru/upload/iblock/ffb/12_2_562_704.pdf (In Russ.).

  14. Forest Plan of the Komi Republic: Approved by the Order of the Head of the Komi Republic Dated May 1, 2020 No. 106-р. https://mpr.rkomi.ru/dokumenty/lesnoy-planrespubliki-komi-na-2020---2029-gg (In Russ.).

  15. Nakvasina E.N., Yudina O.A., Prozherina N.A., Kamalova I.I., Minin N.S. Provenance Trial Plantations in Gene-Ecological Studies in the European North. Arkhangelsk, ASTU Publ., 2008. 308 p. (In Russ.).

  16. Raevsky B.V. Scots Pine Provenance Trial in the Republic of Karelia. Forest Regeneration in the Northern Part of Europe: Proceedings of the Finnish-Russian Seminar. September 28 – October 2, 1998. Bull. For. Res. Inst. Finland. Vantaa. 2000, no. 772, pp. 105–111. (In Russ.).

  17. Raevsky B.V., Ilinov A.A. Growth and Preservation of Provenance Trial Plantations of Spruce Species in Karelia. Lesnoye khozyaystvo, 2002, no. 6, pp. 37–39. (In Russ.).

  18. Rogozin M.V. Lessons of the History of Forest Breeding. Lesnoye khozyaystvo, 2013, no. 6, pp. 20–23. (In Russ.).

  19. Smilga Ya.Ya. Increasing the Growth Rate and Improving the Quality of Aspen Wood through Hybridization in Latvia. Development of the Foundations of Tree Breeding Systems: Abstracts of the Meeting Reports. Part II. Riga, 1981, pp. 24–27. (In Russ.).

  20. Tarakanov V.V., Palenova M.M., Parkina O.V., Rogovtsev R.V., Tretyakova R.A. Forest Tree Breeding in Russia: Achievements, Challenges, Priorities (Overview). Forestry information, 2021, no. 1, pp. 100–143. https://doi.org/10.24419/LHI.2304-3083.2021.1.09

  21. Turkin A.A. Testing the Offspring of Scots Pine Plus Trees (Case Study of the Komi Republic): Cand. Agric. Sci. Diss. Abs. Syktyvkar, 2007. 20 p. (In Russ.).

  22. Guidelines for Forest Seed Production in the Russian Federation. Federal Forestry Service of Russia. Moscow, 2000. 198 p. (In Russ.).

  23. Tsarev A.P., Laur N.V., Tsarev V.A., Tsareva R.P. The Current State of Forest Breeding in the Russian Federation: The Trend of Recent Decades. Lesnoy Zhurnal = Russian Forestry Journal, 2021, no. 6, pp. 38–55. (In Russ.). https://doi.org/10.37482/0536-1036-2021-6-38-55

  24. Chumakova N.I. Improving the Vegetative Propagation Technology of Coniferous Plants by Cuttings. Izvestiya of Timiryazev Agricultural Academy, 2011, no. 5, pp. 161–164. (In Russ.).

  25. Calleja-Rodriguez A., Pan J., Funda T., Chen Z., Baison J., Isik F., Abraamsson S., Wu H.X. Evaluation of the Efficiency of Genomic versus Pedigree Predictions for Growth and Wood Quality Traits in Scots Pine. BMC Genomics, 2020, vol. 21, art. 796. https://doi.org/10.1186/s12864-020-07188-4

  26. Chamberland V., Robichaud F., Perron M., Gélinas N., Bousquet J., Beaulieu J. Conventional versus Genomic Selection for White Spruce Improvement: A Comparison of Costs and Benefits of Plantations on Quebec Public Lands. Tree Genetics & Genomes, 2020, vol. 16, art. 17. https://doi.org/10.1007/s11295-019-1409-7

  27. Chen Z.-Q., Baison J., Pan J., Karlsson B., Andersson B., Westin J., García-Gil M.R., Wu H.X. Accuracy of Genomic Selection for Growth and Wood Quality Traits in Two Control-Pollinated Progeny Trials Using Exome Capture as the Genotyping Platform in Norway Spruce. BMC Genomics, 2018, vol. 19, art. 946. https://doi.org/10.1186/s12864-018-5256-y

  28. Danell Ö. Possible Gains in Initial Stages of National Tree Breeding Programmes Using Different Techniques. Forest Tree Improvement, 23. København, DSR Forlag, 1990, pp. 11–30.

  29. Danell Ö. Survey of Past, Current and Future Swedish Forest Tree Breeding. Silva Fennica, 1991, vol. 25, no. 4, art. 5463. https://doi.org/10.14214/sf.a15621

  30. Danell Ö. Breeding Programmes in Sweden. 1. General Approach. Progeny Testing and Breeding Strategies: Proceedings of the Nordic Group of Tree Breeders. Ed. by S.J. Lee. Scotland, Forestry Authority, 1993, pp. 80–94.

  31. Dietrichson J. Summary of Studies on Genetic Variation in Forest Trees Grown in Scandinavia with Special Reference to the Adaptation Problem. Norway Skogforsoksv Medd, 1971, no. 29, pp. 21–59.

  32. Egertsdotter U., Ahmad I., Clapham D. Automation and Scale up of Somatic Embryogenesis for Commercial Plant Production, with Emphasis on Conifers. Frontiers in Plant Science, 2019, vol. 10, art. 109. https://doi.org/10.3389/fpls.2019.00109

  33. Eriksson G., Ekberg I. An Introduction to Forest Genetics. Uppsala, SLU Repro, 2001. 166 p.

  34. Forest Tree Seed and Seedling Production. Finnish Food Authority. Available at: https://www.ruokavirasto.fi/en/farmers/plant-production/forest-tree-seed-and-seedlingproduction/(accessed 22.02.22).

  35. Giertych M. Summer of Results on Scots Pine (Pinus sylvestris L.) Height Growth in IUFRO Provenance Experiments. Silvae Genetica, 1979, vol. 28, no. 4, pp. 136–152.

  36. Giertych M. Report on the IUFRO 1938 and 1939 Provenance Experiments on Norway Spruce (Picea abies (L.) Karst.). Kórnik, ID PAN, 1984. 179 p.

  37. Giertych M., Oleksyn J. Studies on Genetic Variation in Scots Pine (Pinus sylvestris L.) Coordinated by IUFRO. Silvae Genetica, 1992, vol. 41, no. 3, pp. 133–143.

  38. Haapanen M., Jansson G., Nielsen U.B., Steffenrem A., Stener L.-G. The Status of Tree Breeding and Its Potential for Improving Biomass Production. Skogforsk, Uppsala, 2015. 56 p. Available at: http://www.skogforsk.se/contentassets/9d9c6eeaef374a2283b2716edd8d552e/the-status-of-tree-breeding-low.pdf (accessed 25.03.21).

  39. Hazubska-Przybył T., Wawrzyniak M.K., Kijowska-Oberc J., Staszak A.M., Ratajczak E. Somatic Embryogenesis of Norway Spruce and Scots Pine: Possibility of Application in Modern Forestry. Forests, 2022, vol. 13, iss. 2, art. 155. https://doi.org/10.3390/f13020155

  40. Högberg K.-A., Hajek J., Gailis A., Stenvall N., Zarina I., Teivonen S., Aronen T. Practical Testing of Scots Pine Cutting Propagation – A Joint Metla-Skogforsk-Silava Project. BMC Proceedings, 2001, vol. 5, art. P129. https://doi.org/10.1186/1753-6561-5-S7-P129

  41. Jansson G., Danell O., Stener L.-G. Correspondence between Single-Tree and Multiple-Tree Plot Genetic Tests for Production Traits in Pinus sylvestris. Canadian Journal of Forest Research, 1998, vol. 28, no. 3, pp. 450–458. https://doi.org/10.1139/x98-004

  42. Jansson G., Danusevičius D., Grotehusman H., Kowalczyk J., Krajmerova D., Skrøppa T., Wolf H. Norway Spruce (Picea abies (L.) H.Karst.). Forest Tree Breeding in Europe. Ed. by L. Pâques. Dordrecht, Springer, 2013, vol. 25, pp. 123–176. https://doi.org/10.1007/978-94-007-6146-9_3

  43. Jansson G., Hansen J.K., Haapanen M., Kvaalen H., Steffenrem A. The Genetic and Economic Gains from Forest Tree Breeding Programmes in Scandinavia and Finland. Scandinavian Journal of Forest Research, 2016, vol. 32, iss. 4, pp. 273–286. https://doi.org/10.1080/02827581.2016.1242770

  44. Krakau U.-K., Liesebach M., Aronen T., Lelu-Walter M.-A., Schneck V. Scots Pine (Pinus sylvestris L.). Forest Tree Breeding in Europe. Dordrecht, Springer, 2013, vol. 25, pp. 267–323. https://doi.org/10.1007/978-94-007-6146-9_6

  45. Lebedev V.G., Lebedeva T.N., Chernodubov A.I., Shestibratov K.A. Genomic Selection for Forest Tree Improvement: Methods, Achievements and Perspectives. Forests, 2020, vol. 11, iss. 11, art. 1190. https://doi.org/10.3390/f11111190

  46. Lelu-Walter M.-A., Thompson D., Harvengt L., Sanchez L., Toribio M., Pâques L.E. Somatic Embryogenesis in Forestry with a Focus on Europe: State-of-the-Art, Benefits, Challenges and Future Direction. Tree Genetics & Genomes, 2013, vol. 9, pp. 883–899. https://doi.org/10.1007/s11295-013-0620-1

  47. Lenz P.R.N., Nadeau S., Mottet M.-J., Perron M., Isabel N., Beaulieu J., Bousquet J. Multi‐Trait Genomic Selection for Weevil Resistance, Growth, and Wood Quality in Norway Spruce. Evolutionary Applications, 2020, vol. 13, iss. 1, pp. 76–94. https://doi.org/10.1111/eva.12823

  48. Lindgren D., Karlsson B., Andersson B., Prescher F. Swedish Seed Orchards for Scots Pine and Norway Spruce. Seed Orchards: Proceedings from a Conference at Umeå, Sweden, September 26–28, 2007. Umea, 2008, pp. 142–153.

  49. Lindquist B. Forstgenetik in schwedischen Waldbaupraxis. Radebene und Berlin, Neumann Verlag, 1954. 156 p. (In Swedish).

  50. Namkoong G. A Control Concept of Gene Conservation. Silvae Genetica, 1984, vol. 33, no. 4-5, pp. 160–163.

  51. Nikkanen T. A Review of Scots Pine and Norway Spruce Seed Orchards in Finland. Seed Orchards: Proceedings from a Conference at Umeå, Sweden, September 26–28, 2007. Umea, 2008, pp. 195–198.

  52. Park Y.-S., Beaulieu J., Bousquet J. Multi-Varietal Forestry Integrating Genomic Selection and Somatic Embryogenesis. Vegetative Propagation of Forest Trees. Ed. by Y.-S. Park, J.M. Bonga, H.-K. Moon. Seoul, NIFoS, 2016, pp. 302–322.

  53. Rosvall O. Review of the Swedish Tree Breeding Program. Uppsala, Skogforsk, 2011. 84 p.

  54. Rosvall O. Using Norway Spruce Clones in Swedish Forestry: General Overview and Concepts. Scandinavian Journal of Forest Research, 2019, vol. 34, iss. 5, pp. 336–341. https://doi.org/10.1080/02827581.2019.1614659

  55. Rosvall O., Mullin T. Introduction to Breeding Strategies and Evaluation of Alternatives. Best Practice for Tree Breeding in Europe. Ed. by T.J. Mullin, S. Lee. Uppsala, Skogforsk, 2013, pp. 7–28.

  56. Ruotsalainen S. Managing Breeding Stock in the Initiation of a Long-Term Tree Breeding Program. Academic Dissertation. Finnish Forest Research Institute. Helsinki, Hakapaino Oy, 2002. 95 p.

  57. Ruotsalainen S., Persson T. Scots Pine – Pinus sylvestris L. Best Practice for Tree Breeding in Europe. Ed. by T.J. Mullin, S. Lee. Uppsala, Skogforsk, 2013, pp. 49–65.

  58. Sorensson C. Varietal Pines Boom in the US South. New Zealand Journal of Forestry, 2006, vol. 51, no. 2, pp. 34–40.

  59. Sutton B. Commercial Delivery of Genetic Improvement to Conifer Plantations Using Somatic Embryogenesis. Annals of Forest Science, 2002, vol. 59, no. 5-6, pp. 657–661. https://doi.org/10.1051/forest:2002052

  60. Swedish Forest Statistics. Skogsstyrelsen. (In Swedish). Available at: https://www.skogsstyrelsen.se/statistik/ (accessed 28.02.22).

  61. Välimäki S., Paavilainen L., Tikkinen M., Salonen F., Varis S., Aronen T. Production of Norway Spruce Embryos in a Temporary Immersion System (TIS). In Vitro Cellular & Developmental Biology-Plant, 2020, vol. 56, iss. 4, pp. 430–439. https://doi.org/10.1007/s11627-020-10068-x

  62. Westin J., Haapanen M. Norway Spruce – Picea abies (L.) Karst. Best Practice for Tree Breeding in Europe. Ed. by T.J. Mullin, S. Lee. Uppsala, Skogforsk, 2013, pp. 29–49.



 

Make a Submission


ADP_cert_2024.png

Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"

INDEXED IN: 


DOAJ_logo-colour.png

logotype.png

Логотип.png