Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18



Study of Kraft Lignin Nitration with Acetyl Nitrate in the Presence of Aprotic Solvents

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

Yu.G. Khabarov, A.Yu. Garkotin, V.A. Veshnyakov

Complete text of the article:

Download article (pdf, 1.2MB )






A method for homogeneous nitration of kraft lignin (KL), which consists in its treatment with acetyl nitrate in 1,4-dioxane, tetrahydrofuran, or dimethyl sulfoxide, has been proposed. The effects of reaction time and consumption of acetyl nitrate on KL nitration were studied. A new absorption band with a maximum at 430 nm due to aromatic nitro groups appears in the ionization spectra upon KL nitration. The intensity of this absorption band rises with an increase in consumption of acetyl nitrate and reaction time. At the same time, the intensities of two absorption bands of phenolic hydroxyl groups in the range of 230–300 nm decrease. At the highest acetyl nitrate consumption of 71 mmol / g KL, phenolic absorption bands are practically absent in the ionization spectrum of the products, which, apparently, can be explained by KL acetylation. To analyze the ionization spectra, they were deconvolved. The spectra of reaction products can be described by 3–5 Gaussians with an error of no more than 5 %. The proposed method makes it possible to synthesize the KL nitrated with nitrogen content of up to 2.4 %. Depending on the aprotic solvent used, the kinetic curves of nitration are different. A specific feature of KL nitration in tetrahydrofuran is the presence of an induction period, the duration of which decreases with increasing temperature and which practically disappears at temperatures above 30 °C. The introduction of small additions of nitrites into the reaction mixture makes it possible to reduce the induction period. The KL nitration in dimethyl sulfoxide occurs at a low rate that also increases significantly in the presence of sodium nitrite.
Acknowledgements: The research was carried out with the support of the Shared Use of Equipment Center “Arktika” of the Northern (Arctic) Federal University (Arkhangelsk).
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license • The authors declare that there is no conflict of interest


Yuriy G. Khabarov, Doctor of Chemistry, Prof.; ResearcherID: P-1802-2015, ORCID:
Anton Yu. Garkotin, Postgraduate Student; ResearcherID:AAH-6508-2020, ORCID:
Viacheslav A. Veshnyakov, Candidate of Chemistry; ResearcherID:E-3882-2017, ORCID:


Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; е-mail:


kraft lignin, sulfate lignin, nitration, acetyl nitrate, tetrahydrofuran, dimethyl sulfoxide, dioxane, electron spectroscopy, aprotic solvents

For citation

Khabarov Yu.G., Garkotin A.Yu., Veshnyakov V.A. Study of Kraft Lignin Nitration with Acetyl Nitrate in the Presence of Aprotic Solvents. Lesnoy Zhurnal [Russian Forestry Journal], 2022, no. 2, pp. 193–206. DOI: 10.37482/0536-1036-2022-2-193-206


1. Беллами Л. Инфракрасные спектры молекул. М.: Иностр. лит., 1957. 444 с. Bellamy L.J. The Infra-red Spectra of Complex Molecules. Moscow, Inostrannaya literature Publ., 1957. 444 p.

2. Хабаров Ю.Г., Бабкин И.М., Вешняков В.А. Синтез магнитоактивного соединения на основе сульфата железа(II) // Журн. приклад. химии. 2012. Т. 85, вып. 6. С. 900–905. Khabarov Yu.G., Babkin I.M., Veshnyakov V.A. The Influence of the Nitrosation Conditions of Lignosulfonates on the Synthesis of Magnetoactive Compound. Zhurnal Prikladnoy Khimii [Russian Journal of Applied Chemistry], 2012, vol. 85, iss. 6, pp. 900–905.

3. Хабаров Ю.Г., Лахманов Д.Е., Косяков Д.С., Ульяновский Н.В. Синтез 2,4-динитрофенола // Журн. приклад. химии. 2012. Т. 85, № 10. С. 1644–1647. Khabarov Yu.G., Lakhmanov D.E., Kosyakov D.S., Ul’yanovskii N.V. Synthesis of 2,4-Dinitrophenol. Zhurnal Prikladnoy Khimii [Russian Journal of Applied Chemistry], 2012, vol. 85, no. 10, pp. 1644–1647.

4. Хабаров Ю.Г., Кузяков Н.Ю., Вешняков В.А., Комарова Г.В., Гаркотин А.Ю. Исследование нитрования сульфатного лигнина в гомогенных условиях с помощью электронной спектроскопии // Изв. АН. Сер.: Химическая. 2016. № 12. С. 2925–2931. Khabarov Yu.G., Kuzyakov N.Yu., Veshnyakov V.A., Komarova G.V., Garkotin A.Y. Nitration of Sulfate Lignin under Homogeneous Conditions Studied by Electron Spectroscopy. Izvestiya Akademii Nauk, Seriya Khimicheskaya [Russian Chemical Bulletin], 2016, no. 12, pp. 2925–2931.

5. Шорыгина Н.Н., Резников В.М., Елкин В.В. Реакционная способность лигнина. М.: Наука, 1976. 368 с. Shorygina N.N., Reznikov V.M., Elkin V.V. The Reactivity of Lignin. Moscow, Nauka Publ., 1976. 368 p.

6. Al-Obaidi U., Moodie R.B. The Nitrous Acid-Catalysed Nitration of Phenol. Journal of the Chemical Society, Perkin Transactions 2, 1985, iss. 3, pp. 467–472. DOI:

7. Andersson L., Samuelson O. Demethylation and Nitration of Lignin. Journal of Wood Chemistry and Technology, 1985, vol. 5, iss. 3, pp. 363–378. DOI:

8. Bak R.R., Smallridge A.J. A Fast and Mild Method for the Nitration of Aromatic Rings. Tetrahedron Letters, 2001, vol. 42, iss. 38, pp. 6767–6769. DOI:

9. Ballini R., Barboni L., Giarlo G. The First Conversion of Primary Alkyl Halides to Nitroalkanes under Aqueous Medium. The Journal of Organic Chemistry, 2004, vol. 69, iss. 20, pp. 6907–6908. DOI:

10. Ballini R., Barboni L., Palmieria A. Improved Chemoselective, Ecofriendly Conditions for the Conversion of Primary Alkyl Halides into Nitroalkanes under PEG400. Green Chemistry, 2008, vol. 10, iss. 9, pp. 1004–1006. DOI:

11. Cotton F.A., Wilkinson G., Murillo C.A., Bochmann M. Advanced Inorganic Chemistry. New York, Wiley, 1999. 1376 p.

12. Dimiev A.M., Kargin Yu.M. Sulfonation and ipso Substitution in the Course of Nitration of Aromatic Compounds in the System N2O5-SO3-H2O. Russian Journal of General Chemistry, 1996, vol. 66, no. 11, pp. 1831–1836.

13. Dix L.R., Moodie R.B. Nitrosation and Nitrous Acid-Catalysed Nitration of Anisole and 2,6-Dimethylanisole. Journal of the Chemical Society, Perkin Transactions 2, 1986, no. 7, pp. 1097–1101. DOI:

14. Dugar A., Kumar A., Ameta R., Ameta S.C. A Green Chemical Approach for Nitration of Aromatic Compounds. Macedonian Journal of Chemistry and Chemical Engineering, 2009, vol. 28, no. 2, pp. 163–168. DOI:

15. Fuchs W. Die Chemie des Lignins. Berlin, Verlag von Julius Springer, 1926. 327 S. DOI:

16. Goldschmid O. The Effect of Alkali and Strong Acid on the Ultraviolet Absorption Spectrum of Lignin and Related Compounds. Journal of the American Chemical Society, 1953, vol. 75, no. 15, pp. 3780–3783. DOI:

17. Kent J.A. Handbook of Industrial Chemistry and Biotechnology. New York, Springer, 2012. 1562 p. DOI:

18. Khabarov Yu.G., Lakhmanov D.E. Depolymerization of Condensed Lignins under the Influence of Nitric Acid. Proceedings of the 13th European Workshop on Lignocellulosics and Pulp. Seville, Spain, 2014, pp. 459–462.

19. Khabarov Yu.G., Patrakeev A.A., Veshnyakov V.A., Kosyakov D.S., Ul’yanovskii N.V., Garkotin A.Yu. One-Step Synthesis of Picric Acid from Phenol. Organic Preparations and Procedures International, 2017, vol. 49, no. 2, pp. 178–181. DOI:

20. Kurschner K. From Nitrolignin to Lignin. Zellstoff-Faser, 1935, vol. 32, pp. 87–93.

21. Lindberg O., Walding J. Reactions of Nitrated Kraft Lignin in an Alkaline Oxygen Bleaching Stage. Tappi Journal, 1987, vol. 70, no. 10, pp. 119–123.

22. Louw R. Acetyl Nitrate. Encyclopedia of Reagents for Organic Synthesis. Wiley, 2001. 2 p. DOI:

23. Luzzio F.A. The Henry Reaction: Recent Examples. Tetrahedron, 2001, vol. 57, iss. 6, pp. 915–945. DOI:

24. Nowrouzi N., Mehranpour A.M., Bashiri E., Shayan Z. Aromatic Nitration under Neutral Conditions Using N-Bromosuccinimide/Silver(I) Nitrate. Tetrahedron Letters, 2012, vol. 53, iss. 36, pp. 4841–4842. DOI:

25. Ohi H., Kishino M. Cleavage of Cα-Cβ Bonds of Lignin Model Compounds by Nitrite and Nitric Acid. Holzforschung, 1997, vol. 51, iss. 4, pp. 343–348. DOI:

26. Olah G.A., Malhotra R., Narang S.C. Nitration. Methods and Mechanisms. Weinheim, VCH Publishers, 1989. 330 p.

27. Ono N. The Nitro Group in Organic Synthesis. New York, Wiley-VCH, 2001. 372 p.

28. Palomo C., Oiarbide M., Mielgo A. Unveiling Reliable Catalysts for the Asymmetric Nitroaldol (Henry) Reaction. Angewandte Chemie International Edition, 2004, vol. 43, iss. 41, pp. 5442–5444. DOI:

29. Patnaik P., Khoury J.N. Reaction of Phenol with Nitrite Ion: Pathways of Formation of Nitrophenols in Environmental Waters. Water Research, 2004, vol. 38, iss. 1, pp. 206–210. DOI:

30. Prakash G.K.S., Mathew T. ipso-Nitration of Arenes. Angewandte Chemie International Edition, 2010, vol. 49, iss. 10, pp. 1726–1728. DOI:

31. Richardson B.A. Wood Preservation. New York, E. & F.N. Spon, 1993. 226 р.

32. Sakaue S., Sakata Y., Nishiyama Y., Ishii Y. Oxidation of Aliphatic and Aromatic Amines with Hydrogen Peroxide Catalyzed by Peroxoheteropoly Oxometalates. Chemistry Letters, 1992, vol. 21, no. 2, pp. 289–292. DOI:

33. Tran N., Kalyvas H., Skodje K., Hayashi T., Moenne-Loccoz P., Callan P., Shearer J., Kirschenbaum L., Kim E. Phenol Nitration Induced by an {Fe(NO)2}10 Dinitrosyl Iron Complex. Journal of the American Chemical Society, 2011, vol. 133, no. 5, pp. 1184–1187. DOI:

34. Vione D., Belmondo S., Carnino L. A Kinetic Study of Phenol Nitration and Nitrosation with Nitrous Acid in the Dark. Environmental Chemistry Letters, 2004, vol. 2, no. 3, pp. 135–139. DOI:

35. Zarchi M.A.K., Zarei A. Synthesis of Nitroalkanes from Alkylhalides under Mild and Nonaqueous Conditions by Using Polymer Supported Nitrites. Journal of the Chinese Chemical Society, 2005, vol. 52, iss. 2, pp. 309–311. DOI:

36. Zhang W., Zhang J., Ren S., Liu Y. Palladium-Catalyzed Aromatic C-H Bond Nitration Using Removable Directing Groups: Regiospecific Synthesis of Substituted o-Nitrophenols from Related Phenols. The Journal of Organic Chemistry, 2014, vol. 79, no. 23, pp. 11508–11516. DOI:


Make a Submission


Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"