Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18



Formation of Coaxial Fields of Residual Stresses in the Circular Saw Blade

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

V.I. Melekhov, I.I. Solovev, N.G. Ponomareva

Complete text of the article:

Download article (pdf, 0.5MB )






The working tool of machines with circular cutting units is a circular saw, the condition of which largely determines the quality of material processing. Circular saw blades in the process of operation are subjected to a complex effect of force and temperature factors that cause elongation and deformation of the saw blade, and the occurrence of internal stresses that take it out of the flat form of elastic balance and reduce the tool’s performance. The ability of saws to resist these factors is determined by the rigidity and stability of the saw blade. It is customary to consider a circular saw blade consisting of three zones: peripheral, middle and central. The middle part has the greatest influence on the stability of the saw blade. Initially, after manufacturing, the saw blade has a flat shape of balance, which can be disturbed by any external impact on the saw during the cutting process. The balance disturbance causes the blade and the cutting edge of the saw to deviate from the initial operating condition and reduce the accuracy and quality of wood processing. In order to prevent the influence of external forces, coaxial zones of plastic deformation of a certain width are formed in the middle part of the blade. In this case, under the influence of the created stresses, the effect of web tension appears. In world practice, two methods of forming such zones are used: forging and rolling. The creation of normalized stresses in the circular saw blade is carried out by local mechanical contact action of the working body of the saw tool on the steel saw blade in certain places of the middle zone. Compressive stresses compensating the forces of centrifugal acceleration, the thermal heating of individual zones of the saw blade, the external longitudinal and transverse bending forces that occur in the blade during wood processing are formed in the treated annular zones. The considered methods for creating annular zones of plastic deformation fields involving mechanical action on the saw blade have significant drawbacks, the elimination of which requires fundamentally new technical solutions. It is proposed to form coaxial fields of residual stresses of the saw blade by thermoplastic action consisting in creation of normalized residual stresses in the saw blade by concentrated thermal action on local annular zones coaxially located along the saw blade for the entire thickness of the saw. The formation of coaxial circular fields of residual stresses in the circular saw blade is simulated. The considered method of saw preparation will increase its stability in the process of operation.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license • The authors declare that there is no conflict of interest


Vladimir I. Melekhov, Doctor of Engineering, Prof.; ResearcherID: Q-1051-2019, ORCID:
Ivan I. Solovev, Candidate of Engineering; ResearcherID: ABE-7412-2020, ORCID:
Nataliya G. Ponomareva, Candidate of Engineering; ResearcherID:A-5693-2019, ORCID:


Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; e-mail:,


thermoplastic stresses, circular saw, saw stability, high-speed heating, annular zone

For citation

Melekhov V.I., Solovev I.I., Ponomareva N.G. Formation of Coaxial Fields of Residual Stresses in the Circular Saw Blade. Lesnoy Zhurnal [Russian Forestry Journal], 2022, no. 2, pp. 170–177. DOI: 10.37482/0536-1036-2022-2-170-177


1. Биргер И.А. Остаточные напряжения. М.: Машгиз, 1963. 232 с. Birger I.A. Residual Stresses. Moscow, Mashgiz Publ., 1963. 232 p.

2. Богатов А.А. Механические свойства и модели разрушения металлов. Екатеринбург: УГТУ -УПИ , 2002. 329 с. Bogatov A.A. Mechanical Properties and Models of Metal Destruction. Yekaterinburg, USTU-UPI Publ., 2002. 329 p.

3. Богатов А.А. Остаточные напряжения и разрушение металла // Материалы 6-й междунар. науч.-практ. конф. «Инновационные технологии в металлургии и машиностроении». Екатеринбург: УрФУ, 2013. С. 95–101. Bogatov A.A. Residual Stresses and Metal Destruction. Proceedings of the 6th International Youth Scientific and Practical Conference “Innovative Technologies in Metallurgy and Mechanical Engineering”. Yekaterinburg, UrFU Publ., 2013, pp. 95–101.

4. Боровиков Е.М., Орлов Б.Ф. Термический способ подготовки круглых пил к работе // Изв. вузов. Лесн. журн. 1974. № 6. С. 90–96. Borovikov E.M., Orlov B.F. Thermal Method of Preparing Circular Saws for Operation. Lesnoy Zhurnal [Russian Forestry Journal], 1974, no. 6, pp. 90–96. URL:

5. Бородин И.Н., Майер А.Е., Петров Ю.В., Груздков А.А. Максимум предела текучести при квазистатической и высокоскоростной пластической деформации металлов // Физика твердого тела. 2014. Т. 56, вып. 12. С. 2384–2393. Borodin I.N., Mayer A.E., Petrov Yu.V., Gruzdkov A.A. Maximum Yield Strength under Quasi-Static and High-Speed Plastic Deformation of Metals. Fizika tverdogo tela [Physics of the Solid State], 2014, vol. 56, iss. 12, pp. 2384–2393. DOI:

6. ГОСТ 5950–2000. Прутки, полосы и мотки из инструментальной легированной стали. Общие технические условия: дата введения 2002-01-01. М.: Изд-во стандартов, 2003. 35 с. State Standard GOST 5950–2000. Tool Alloy Steel Bars, Strips and Coils. General Specifications. Moscow, Izdatel’stvo standartov, 2003. 35 p.

7. Мелехов В.И., Соловьев И.И. Создание термопластических напряжений в пильном диске круглой пилы // Изв. вузов. Лесн. журн. 2010. № 2. С. 87–90. Melekhov V.I., Soloviev I.I. Creation of Thermoplastic Tension in Circular Saw Blade. Lesnoy Zhurnal [Russian Forestry Journal], 2010, no. 2, pp. 87–90. URL:

8. Мелехов В.И., Соловьев И.И., Тюрикова Т.В., Пономарева Н.Г. Повышение устойчивости дереворежущих пил термопластическим воздействием на распределение остаточных напряжений в полотне // Изв. вузов. Лесн. журн. 2020. № 6. С. 172–181. Melekhov V.I., Solovev I.I., Tyurikova T.V., Ponomareva N.G. Improving the Stability of Wood-Cutting Saws by Thermoplastic Action on the Distribution of Residual Stresses in the Blade. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 6, pp. 172–181. DOI:

9. Патент 2434952 РФ. Устройство для создания термопластических напряжений в пильном диске круглой пилы: № 2010117098: заявл. 29.04.2010: опубл. 27.11.2011 / В.И. Мелехов, И.И. Соловьев. Solov’ev I.I., Melekhov V.I. Device to Develop Thermoplastic Stresses in Saw Blade of Ring Saw. Patent RF no. RU 2434952 C1, 2011.

10. Патент 2614863 РФ. Устройство для создания термопластических напряжений в полосовых пилах: № 2015141255: заявл. 28.09.2015: опубл. 29.03.2017 / В.И. Мелехов, И.И. Соловьев. Melekhov V.I., Solovev I.I. Device for Creation of Thermoplastic Concentrated Stresses in Strip Saws. Patent RF no. RU 2614863 C1, 2017.

11. Патент 2663029 РФ. Способ термопластического натяжения пильного диска круглой пилы: № 2017121665: заявл. 21.06.2017: опубл. 01.08.2018 / В.И. Мелехов, И.И. Соловьев. Solovev I.I., Melekhov V.I. Method of Thermoplastic Tensioning of the Round Saw Circular Saw Blade. Patent RF no. RU 2663029 C1, 2018.

12. Поздеев А.А., Няшин Ю.И., Трусов П.В. Остаточные напряжения: теория и приложения: моногр. М.: Наука, 1982. 109 с. Pozdeyev A.A., Nyashin Yu.I., Trusov P.V. Residual Stresses: Theory and Applications. Moscow, Nauka Publ., 1982. 109 p.

13. Прокофьев Г.Ф. Создание высокотехнологичных лесопильных станков: моногр. Архангельск, 2018. 157 с. Prokof’ev G.F. Creation of High-Tech Sawmills. Arkhangelsk, 2018. 157 p.

14. Соловьев И.И. Совершенствование термопластической технологии подготовки круглых пил: автореф. дис. … канд. техн. наук. Архангельск, 2012. 18 с. Solovev I.I. Improvement of Thermoplastic Technology for Preparing Circular Saws: Cand. Eng. Sci. Diss. Abs. Arkhangelsk, 2012. 18 p.

15. Стахиев Ю.М. Устойчивость и колебания плоских круглых пил. М.: Лесн. пром-сть, 1977. 296 с. Stakhiyev Yu.M. Stability and Vibrations of Flat Circular Saws. Moscow, Lesnaya promyshlennost’ Publ., 1977. 296 p.

16. Стахиев Ю.М. Научно-технологические основы производства, подготовки и эксплуатации плоских круглых пил для распиловки древесины: автореф. дис. … д-ра техн. наук. Архангельск, 2002. 32 с. Stakhiyev Yu.M. Scientific and Technological Bases of Production, Preparation and Operation of Flat Round Saws for Wood Sawing: Dr. Eng. Sci. Diss. Abs. Arkhangelsk, 2002. 32 p.

17. Якунин Н.К. Подготовка круглых пил к работе. М.: Лесн. пром-сть, 1980. 153 с. Yakunin N.K. Preparation of Circular Saws for Operation. Moscow, Lesnaya promyshlennost’ Publ., 1980. 153 p.

18. Bayer R.J. Mechanical Wear Fundamentals and Testing. New York, CRC Press, 2004. 416 p. DOI:

19. Bathe K.-J. Finite Element Procedures in Engineering Analysis. New Jersey, Prentice Hall, 1982. 735 p.

20. Calladine C.R. Theory of Shell Structures. Cambridge, Cambridge University Press, 1983. 763 p. DOI:

21. Hughes T.J.R., Hinton E. Finite Element Methods for Plates and Shells: Elements Technology. Swansea, Pineridge Press, 1986, vol. 1. 315 p.

22. Meyers M.A., Chawla K.K. Mechanical Behavior of Materials. Cambridge University Press, 2009. 856 p.


Make a Submission


Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"