Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18



Birch Wood Modification Technology for Creating Neutron Shielding Materials

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

A.R. Birman, A.A. Tambi, S.A. Ugryumov, P.R. Gilvanov

Complete text of the article:

Download article (pdf, 0.5MB )






The article considers a method for producing neutron shielding materials based on modified birch wood. It is known that shielding materials based on polyethylene with boron addition are widely used in the nuclear industry, medicine and the military-industrial complex to create protection against neutron radiation. Due to the high hydrogen content, their use makes it possible to protect objects from the effects of fast neutrons, and thermal neutrons are effectively contained due to the presence of boron atoms in the protective screens. Wood is also a hydrogen-containing material, therefore, it is of scientific and practical interest to create and study the properties of neutron shielding materials based on wood. The most expedient is the creation of neutron shielding materials from hardwood, which have a high specific density and, accordingly, a high content of hydrogen per unit volume. It is possible to increase the hydrogen content per unit volume of wood and, accordingly, to reduce the thickness of the protective layer due to the compaction of wood by the method of flat (singleaxis) pressing. The main condition for obtaining high-strength and form-resistant pressed wood is the preservation of its microstructure (without damage) during pressing. It has been theoretically found that the optimal pressing stage, at which the lowest percentage of microfractures in wood is observed, should not exceed 50 %. In the experimental part of the work, birch lumber was used for the production of an experimental neutron shielding material, radial sawn with a length of 200 mm, a width of 100 mm, and a thickness of 80 mm to obtain ready-made neutron shielding materials with a thickness of 40 mm, which is equivalent to a polyethylene shielding thickness of 26.8 mm. It is known that during flat pressing bursting forces occur in wood, which can lead to cracks, destruction of edges, buckling, delamination, and a decrease in the uniformity of the density distribution. The bursting force acts in the direction perpendicular to the action of the applied load. Therefore, in the manufacture of a neutron shielding composite material, it is necessary to use press molds (with side stops) that stop the impact of the bursting force. The design parameters of the press molds and pressing modes are determined taking into account the resistance caused by the friction forces of the wood against the side walls of the press mold. The design of a press mold that provides the production of a neutron shielding material of specified properties from wood is presented.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license • The authors declare that there is no conflict of interest


Alexei R. Birman1, Doctor of Engineering, Prof.; ResearcherID: X-3713-2019, ORCID:
Alexander A. Tambi2, Doctor of Engineering, Prof.; ResearcherID: J-9614-2017, ORCID:
Sergey A. Ugryumov1, Doctor of Engineering, Prof.; ResearcherID:F-6510-2016, ORCID:
Pavel R. Gilvanov3, Candidate of Engineering, Assoc. Prof.; ResearcherID:AAZ-9283-2021, ORCID:


1Saint-Petersburg State Forest Technical University named after S.M. Kirov, Institutskiy per., 5, liter U, Saint Petersburg, 194021, Russian Federation; e-mail:
2Arctic State Agrotechnological University, sh. Sergelyakhskoye, 3-y km, 3, Yakutsk, 677007, Russian Federation; e-mail:
3Military Space Academy named after A.F. Mozhaisky, ul. Zhdanovskaya, 13, Saint Petersburg, 197198, Russian Federation; e-mail: vka_kaf104@mа


neutron shielding composite material, wood modification, pressing, loading, press mold

For citation

Birman A.R., Tambi A.A., Ugryumov S.A., Gilvanov P.R. Birch Wood Modification Technology for Creating Neutron Shielding Materials. Lesnoy Zhurnal [Russian Forestry Journal], 2022, no. 2, pp. 159–169. DOI: 10.37482/0536-1036-2022-2-159-169


1. Бирман А.Р., Белоногова Н.А. Нейтронозащитные свойства древесины // Изв. вузов. Лесн. журн. 2008. № 1. С. 101–106. Birman A.R., Belonogova N.A. Neutron-Shielding Wood Characteristics. Lesnoy Zhurnal [Russian Forestry Journal], 2008, no. 1, pp. 101–106. URL:

2. Бирман А.Р., Белоногова Н.А., Соколова В.А. Нейтронозащитные материалы из древесины // Изв. СП бЛТА . 2015. Вып. 212. С. 176–184. Birman A.R., Belonogova N.A., Sokolova V.A. Neutron Protective Wood Materials. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii [News of the Saint Petersburg State Forest Technical Academy], 2015, iss. 212, pp. 176–184.

3. Болдырев П.В. Сушка древесины. Практическое руководство. СП б.: ПРО-ФИКС , 2002. 156 с. Boldyrev P.V. Drying of Wood. Practical Guide. Saint Petersburg, PROFIKS Publ., 2002. 156 p.

4. Гончаров Н.А., Башинский В.Ю., Буглай Б.М. Технология изделий из древесины. М.: Лесн. пром-сть, 1990. 528 с. Goncharov N.A., Bashinskiy V.Yu., Buglay B.M.Technology of Wood Products. Moscow, Lesnaya promyshlennost’ Publ., 1990. 528 p.

5. Официальный сайт производителя материала Neutrostop АО «Копос колин». Режим доступа: (дата обращения: 13.06.21). The Official Website of the Manufacturer of the Material Neutrostop AO “Kopos kolin”.

6. Патякин В.И., Бирман А.Р. Использование древесины для защиты от нейтронных излучений // Материалы 57-й науч. конф. профессоров, преподавателей, науч. работников, инженеров и аспирантов ун-та. СП б.: СП бГАСУ , 2000. С. 86–87. Patyakin V.I., Birman A.R. The Use of Wood for Protection from Neutron Radiation. Materials of the 57-th Scientific Conference of Professors, Lecturers, Researchers, Engineers and Postgraduates of the University. Saint Petersburg, SPbGASU Publ., 2000, рр. 86–87.

7. Перелыгин Л.М. Древесиноведение. М.: Сов. наука, 1957. 363 с. Perelygin L.M. Wood Science. Moscow, Sovetskaya nauka Publ., 1957. 363 p.

8. Рыдченко Г.Д. Двустороннее прессование древесины // Исследование конструкций и физико-механических свойств материалов. Воронеж: ВЛТИ , 1967. Т. 31. С. 25–28. Rydchenko G.D. Double-Ended Pressing of Wood. Research of Structures and Physical and Mechanical Properties of Materials. Voronezh, VLTI Publ., 1967, vol. 31, pp. 25–28.

9. Соколова В.А., Бирман А.Р., Орлов В.В., Теппоев А.В., Кривоногова А.С., Бачериков И.В., Парфенопуло Г.К. Использование железо-водных и дерево-железных смесей в защите от ионизирующих излучений // Системы. Методы. Технологии. 2018. № 1(37). с. 94–99. Sokolova V.A., Birman A.R., Orlov V.V., Teppoev A.V., Krivonogova A.S., Bacherikov I.V., Parfenopulo G.K. The Use of Iron-Water and Wood-Iron Mixtures in Protection from Ionizing Radiation. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2018, no. 1(37), pp. 94–99. DOI:

10. Соловьева Т.В., Ревяко М.М., Хмызов И.А. Технология древесных композиционных материалов и изделий. Минск: БГТУ , 2008. 180 с. Solov’yova T.V., Revyako M.M., Khmyzov I.A. Technology of Wood Composite Materials and Products. Minsk, BSTU Publ., 2008. 180 p.

11. Тамби А.А., Григорьев И.В., Куницкая О.А. Обоснование необходимости внедрения процессов промышленного лесопиления в структуру лесозаготовительной отрасли // Изв. вузов. Лесн. журн. 2017. № 6. С. 76–88. Tambi A.A., Grigor’ev I.V., Kunitskaya O.A. The Rationale for Implementation of Industrial Sawmilling Processes in the Logging Industry. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 6, pр. 76–88. DOI:

12. Уголев Б.Н. Испытания древесины и древесных материалов. М.: Лесн. пром-сть, 1965. 251 с. Ugolev B.N. Testing Wood and Wood Materials. Moscow, Lesnaya promyshlennost’ Publ., 1965. 251 p.

13. Хухрянский П.Н. Дерево вместо металла. Воронеж: ВГЛТА , 1954. 44 с. Khukhryanskiy P.N. Wood instead of Metal. Voronezh, VGLTA Publ., 1954. 44 p.

14. Хухрянский П.Н. Прессование древесины. М.: Лесн. пром-сть, 1964. 361 с. Khukhryanskiy P.N. Wood Pressing. Moscow, Lesnaya promyshlennost’ Publ., 1964. 361 p.

15. Шамаев В.А. Химико-механическое модифицирование древесины. Воронеж: ВГЛТА , 2003. 260 с. Shamayev V.A. Chemical and Mechanical Modification of Wood. Voronezh, VSFTA Publ., 2003. 260 p.

16. Шамаев В.А., Воскобойников И.В., Щелоков В.М. Достижения и проблемы модифицированной древесины // Деревообработка: технологии, оборудование, менеджмент XXI века: тр. IV междунар. евраз. симп. Екатеринбург: УГЛТУ , 2009. С. 224–235. Shamaev V.A., Voskoboynikov I.V., Shchelokov V.M. Achievements and Problems of Modified Wood. Woodworking: Technologies, Equipment, Management of the XXI Century. Proceedings of the IV International Eurasian Symposium. Yekaterinburg, USFEU Publ., 2009, pp. 224–235.

17. Шамаев В.А., Никулина Н.С., Медведев И.Н. Модифицирование древесины. М.: ФЛИ НТА , 2013. 448 с. Shamaev V.A., Nikulina N.S., Medvedev I.N. Wood Modification. Moscow, FLINTA Publ., 2013. 448 p.

18. Шамаев В.А., Скориданов Р.В., Постников В.В. Получение модифицированной древесины с высокими прочностными свойствами // Изв. вузов. Лесн. журн. 2006. № 4. С. 78–83. Shamaev V.A., Skoridanov R.V., Postnikov V.V. Producing Modified Timber with High Strength Properties. Lesnoy Zhurnal [Russian Forestry Journal], 2006, no. 4, pp. 78–83.

19. Шейкман Д.В. Технология модифицирования древесины мягких лиственных пород и березы для напольных покрытий: дис. … канд. техн. наук. Екатеринбург, 2017. 207 с. Sheykman D.V. Technology of Modifying Deciduous Wood and Birch Wood for Floor Coverings: Cand. Eng. Sci. Diss. Yekaterinburg, 2017. 207 p.

20. Baily P.J., Preston R.D. Some Aspects of Sofwood Permeability. II. Flow of Polar and Non-Polar Liquids through Sapwood and Heartwood of Douglas Fir. Holzforschung, 1970, В. 24, H. 2, pp. 37–45. DOI:

21. Baker J.M., Morgan Jn-n, Muller E.R., Savory J.C. Manipulation of Double Vacuum Sheduls in Treatment of Scots Pine Sapwood. Record of the 1973 Annual Convention of the British Wood Preserving Association. Cambridge, 1973, pp. 183–199.

22. Bramhall G. The Validity of Darcy Law in the Axial Penetration of Wood. Wood Science and Technology, 1971, vol. 5, iss. 2, pp. 121–134. DOI:

23. Comstock G.L. Longitudinal Permeability of Green Eastern Hemlock. Forest Products Journal, 1965, vol. 15, iss. 10, pp. 441–449.

24. Hammer R.M. De Aethel. Talanta, 1980, vol. 27, no. 6, p. 535.

25. Neutrostop. Export – Import KOVO. Praha, 1985. 5 p.

26. Practical Vacuum Treating Plant for the Retail Lumber Yard. Building Supply News, 1952, no. 1, pp. 58–61.

27. Stamm A.J. Penetration of Hardwoods by Liquids. Wood Science and Technology, 1973, vol. 7, iss. 4, pp. 285–296. DOI:

28. Sucoff E.J., Chen P.Y.S., Hossfeld R.L. Permeabilty of Unseasoned Xylem of Northern White Cedar. Forest Prooducts Journal, 1965, vol. 15, iss. 8, pp. 321–324.

29. Tambi A.A., Ignatenko S.V., Shinkarenko S.Yu., Kul’kov A.M., Grigor’ev I.V., Yurkova O.V., Sazhin V.E. Study of Wood Glued Joints Formed by Urea Melamine Formaldehyde Binders. Polymer Science, Series D, 2019, vol. 12, iss. 1, pp. 51–57.


Make a Submission


Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"