Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18



Production and Use of Birch Activated Carbon for Drinking Water Post-Treatment

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

Yu.L. Yur’ev

Complete text of the article:

Download article (pdf, 0.5MB )






Pyrolysis of low-quality deciduous wood in the plants with low environmental hazard, located near the source of raw materials is one of the promising options for its processing. In the future, it will be possible to convert such charcoal into activated carbons for various purposes. The research purpose is to evaluate the usefulness of activated carbon derived from smalldiameter birch wood for the drinking water post-treatment, as well as to show the possibility of its regeneration. Commercial activated carbon BAU-A and crushed activated charcoal, obtained by steam activation of coal made of small-diameter birch wood in a rotary kiln with a z-shaped insert, were used as a filter medium in the columns. Water was supplied to the columns with activated carbon in such a way as to ensure the contact duration of water with coal for 8, 4, and 2 min. After three months of continuous operation, all carbon filters with 8-minute contact time retained sorption activity, and filters with 4-minute contact time were used for 80 %. Further on, water post-treatment tests were carried out with recovered carbons. It is found that post-treatment using birch activated carbon reduces the water permanganate  oxidation by about 1 mg O2/dm3. The most complementary preferred contact time of coal charge with water is 4 min. The coal after regeneration is recyclable. It is shown that coal made of small-diameter birch wood using activation in a kiln with a z-shaped insert reduces the water oxidation in the same way as commercial coal BAU-A. Herewith, the use of cheaper raw materials (fine birch wood) and coal activation with low specific consumption of water steam (due to the organization of oscillating pressure) cut costs for the filter medium production and drinking water post-treatment.


Yu.L. Yur’ev, Doctor of Engineering, Prof., Head of Department; ResearcherID: AAA-8591-2020,


Ural State Forest Engineering University, ul. Sibirskiy trakt, 37, Yekaterinburg, 620100, Russian Federation; e-mail:


drinking water post-treatment, oxidability, sorption, activated carbon, smalldiameter birch wood

For citation

Yur’ev Yu.L. Production and Use of Birch Activated Carbon for Drinking Water Post-Treatment. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 3, pp. 169–175. DOI: 10.37482/0536-1036-2020-3-169-175


1. Kim A.N., Romanova Yu.V., Grun N.A. Improving the Quality of Drinking Water through Development of Sorption Post-Treatment of Tap Water. Perspektivy razvitiya stroitel’nogo kompleksa, 2015, no. S1, pp. 316–326.
2. Klushin V.N., Khomutov A.N., Statirov M. M., Kireev A.S., Mukhin V.M. New Activated Carbons of Domestic Production for Water Treatment and Drinking Water Post-Treatment. Khimicheskaya Promyshlennost’ segodnya, 2008, no. 5, pp. 31–41.
3. Korol’kova S.V. Environmental and Health Substantiation of Use and Optimization of Autonomous Adsorption Devices for Drinking Water Post-Treatment: Cand. Eng. Sci. Diss. Saint-Petersburg, 2000. 226 p.
4. Makarevich N.A., Bogdanovich N.I. The Theoretical Basis of Adsorption. Arkhangelsk, NArFU Publ., 2015. 362 p.
5. Samoylenko S.A., Yur’yev Yu.L., Mekhrentsev A.V., Zhevlakov A.N. Retort. Patent RF no. RU 76644 U1, 2008.
6. Bogdanovich N.I, Gol’verk S.V. Charcoal-Producing Plant. Patent RF no. RU 2027735 C1, 1992.
7. Panjuta S.A., Jur’ev Ju.L., Stakhrovskaja T.E., Shishko I.I. Method of Activation of Carbonized Materials. Patent RF no. RU 2051097 C1, 1995.
8. Pervov A.G. How to Choose Filters for Tap Water. Vodoochistka. Vodopodgotovka. Vodosnabzheniye, 2014, no. 1(73), pp. 42–45.
9. Shishkin V.V. The Formation of the Drinking Water Quality by Adsorptive Post-Treatment from Chlorophenol and Chloroform: Cand. Eng. Sci. Diss. Abs. Kemerovo, 2009. 22 p.
10. Yuriev Yu.L. Charcoal Properties of Small Size Birch Wood. Vestnik PNIPU. Khimicheskaya tekhnologiya i biotekhnologiya [PNRPU Bulletin. Chemical Technology and Biotechnology], 2018, no 1, pp. 105–112. DOI: 10.15593/2224-9400/2018.1.09
11. Yur’ev Yu.L., Gindulin I.K., Drozdova N.A. Options of Low-Grade Wood  Processing into Carbon-Base Materials. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 5, pp. 139–149. DOI: 10.17238/issn0536-1036.2017.5.139, URL:
12. Yur’ev Yu.L., Drozdova N.A., Panova T.M. Post-Treatment of Artesian Water Using Modified Charcoals. Vestnik Kazanskogo tekhnologicheskogo universiteta [Herald of Kazan Technological University], 2013. T. 16. No 19. S. 85–86.
13. Yur’ev Yu.L., Shteba T.V. Study of the patterns of activation of carbon nanoporic matrix water vapor. Vestnik tekhnologicheskogo universiteta [Herald of Kazan Technological University], 2015, vol. 18, no. 4, pp. 194–197.
14. Choi Y., Lee J. Filter System. Patent US no. US 9889408 B2, 2018.
15. Elliott A.M. Manufacture of Charcoal. Patent US no. US 8202400 B2, 2012.
16. Olander М., Piers P., Beierwaltes W.Т., Gaspard J.G. Portable Biochar Kiln. Patent US no. US 10385274 B2, 2019.
17. Roskill: Activated Carbon Could See World Consumption Double in Four Years. Roskill Information Services, 2013. Available at: html (accessed 09.12.19).
18. Shearer D., Gaunt J., Peacocke V.C. Biochar. Patent US no. US 8747797 B2, 2014.
19. Takeda H., Itakura M., Ito M., Yoshinobu H. Water Filter Cartridge and Water Purifier. Patent US no. US 10023476 B2, 2018.
20. United Nations Commodity Trade Statistics Database. Available at: https://com (accessed 09.12.19).
21. Yokoyama K., Fujiwara M., Ueda S., Arai Y., Kudo T., Miyahara S. Carbonizing Apparatus, Carbonizing System and Carbonizing Method. Patent US no. US 20080142354 A1, 2008.

Production and Use of Birch Activated Carbon for Drinking Water Post-Treatment


Make a Submission


Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"