Address: 17 Naberezhnaya Severnoy Dviny, Arkhangelsk 163002 Russian Federation. Northern (Arctic) Federal University named after M.V.Lomonosov. Office 1425

Phone / Fax: (818-2) 21-61-18



Calculation of Phenomenological Model Parameters of Cellulose Material Deformation Based on the Data from Automated Analyzer

Версия для печати
Creative Commons License
These works are licensed under a Creative Commons Attribution 4.0 International License.

T.N. Manakhova, Ya.V. Kazakov

Complete text of the article:

Download article (pdf, 0.5MB )





The paper presents a method developed to predict deformation tensile behaviour of unbleached softwood kraft pulp using a phenomenological model based on the equation of a typical body with a single relaxation time. The model parameters are calculated by multivariate regression analysis. The model links the properties of fiber and tensile deformation properties of pulp and paper material made of unbleached softwood industrial kraft pulp with different lignin content (the Kappa number 25.9 ... 51.4) and with refining degree of 14 ... 40 °SR . As input data we used measurements of fiber structural-morphological characteristics taken by the automated analyzer L&W FiberTester. During the simulation, parameters of the deformation model are calculated by regression equation. Predicted values of density, thickness, strain to failure, and failure stress for the selected sample are calculated. Then points of "stress-strain" curve are calculated, mathematical processing of the model curve is performed and characteristics of deformability are calculated. The results are exported to MS Excel for further analysis. The presented method of predicting deformability and tensile strength for unbleached softwood kraft pulp with known Kappa number and degree of grinding allows us to reduce the time required to obtain data on the deformation properties of cellulose material to 20 minutes without having to make pulp handsheets or run any tests.


T.N. Manakhova, Postgraduate Student; Ya.V. Kazakov, Ph.D. (Engineering)

Northern (Arctic) Federal University named after M.V. Lomonosov
Naberezhnaya Severnoy Dviny, 17, 163002, Arkhangelsk, Russia


Northern (Arctic) Federal University named after M.V. Lomonosov


unbleached softwood kraft pulp, deformation characteristics, structural and morphological characteristics of cellulose fiber, phenomenological model.


REFERENCES 1. Kazakov Ya.V., Komarov V.I. Matematicheskaya obrabotka krivykh zavisimosti "napryazhenie-deformatsiya", poluchennykh pri ispytanii tsellyulozno-bumazhnykh materialov na rastyazhenie [Mathematical Processing of the "Stress-Strain" Curves Obtained During Tension Testing of Pulp and Paper Materials]. Lesnoy zhurnal, 1995, no. 1, pp. 109–114. 2. Komarov V.I., Kazakov Ya.V. Analiz mekhanicheskogo povedeniya tsellyulozno-bumazhnykh materialov pri prilozhenii rastyagivayushchey nagruzki [Analysis of Mechanical Behavior of Pulp and Paper Materials at Tensile Load]. Lesnoy vestnik MGUL, 2000, no. 3 (12), pp. 52–62. 3. Komarov V.I., Kazakov Ya.V. Ispol'zovanie fenomenologicheskoy modeli deformirovaniya dlya prognozirovaniya deformativnosti sul'fatnoy nebelenoy tsellyulozy [Phenomenological Model for Predicting Deformation of Unbleached Kraft Pulp]. Tsellyuloza. Bumaga. Karton, 2000, no. 5, pp. 38–41. 4. Manakhova T.N., Kazakov Ya.V. Izmenenie svoystv volokon khvoynoy sul'fatnoy nebelenoy tsellyulozy v protsessakh proizvodstva [Changes in Fiber Properties of Unbleached Softwood Sulphate Pulp During Production]. Novye dostizheniya v khimii i khimicheskoy tekhnologii rastitel'nogo syr'ya: materialy V Vserossiyskoy konf. [Latest Advances in Chemistry and Chemical Engineering of Plant Materials: Proc. 5th All-Russian Conf.]. Barnaul, 2012, pp. 350–353. 5. Manakhova T.N., Kazakov Ya.V. Optimizatsiya ispol'zovaniya prochnostnogo potentsiala khvoynogo volokna v protsessakh proizvodstva [Optimizing the Use of Strength Capacity of Coniferous Fibers in Production]. Sovremennoe oborudovanie i tekhnologii izgotovleniya bumazhno-kartonnoy produktsii iz makulaturnogo syr'ya. Proizvodstvo gofrokartona i izgotovlenie tary: Materialy i doklady 13-y Mezhdunar. nauch-tekhn. konf. [Modern Equipment and Technology of Paper and Paperboard Production from Waste Paper. Production of Corrugated Cardboard and Package: Proc. 13th Int. Sci. and Tech. Conf.]. 23–25 May 2012, Karavaevo. Moscow, 2012, pp. 75–83. 6. Puzyrev A.S. Izmerenie kachestva bumagi i kartona [Measuring the Quality of Paper and Paperboard]. Moscow, 1966. 410 p. 7. Tyuleneva E.M. Utochnenie reologicheskoy modeli drevesiny [Rheological Model of Wood Revisited]. Khvoynye boreal'noy zony, 2008, no. 1–2, pp. 179–183. 8. Kazakov Ya.V., Manakhova T.N. Programma dlya prognozirovaniya deformatsionnykh kharakteristik tsellyulozy po rezul'tatam analiza volokna (Prognoz) [Program for Prediction of Deformation Characteristics of Pulp by Fibers Analysis (Prognoz)]. Certificate of State Registration of Computer Software. Russian Federation, no. 2013619256. 9. Karlsson H. Fibre Guide. Fibre Analysis and Process Applications in the Pulp and Paper Industry. AB Lorentzen & Werrte, 2006. 120 p.

Calculation of Phenomenological Model Parameters of Cellulose Material Deformation Based on the Data from Automated Analyzer


Make a Submission


Lesnoy Zhurnal (Russian Forestry Journal) was awarded the "Seal of Recognition for Active Data Provider of the Year 2024"