Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Численное исследование напряженно-деформированного состояния модифицированной деревянной балки. С. 167–178

Версия для печати

Д.А. Чибрикин, М.В. Лукин, А.В. Лукина, Т.В. Тюрикова, С.И. Рощина

Рубрика: Механическая обработка древесины

Скачать статью (pdf, 4.9MB )

УДК

691.11

DOI:

10.37482/0536-1036-2022-3-167-178

Аннотация

Сохранение памятников деревянного зодчества требует особого внимания, так как в процессе эксплуатации на протяжении 100 лет и более деревянные конструкции подвергаются атмосферным воздействиям, в результате чего ухудшается несущая способность этих конструкций. Для зданий, представляющих историческую ценность, применение внешних систем усиления конструкции влечет потерю архитектурного облика. Предлагаемый способ восстановления несущей способности деструктированных деревянных балок в опорных зонах основан на их модификации полимерной композицией. Рассмотрены 3 типа балок из сосны: деструктированная, модифицированная в опорных зонах; деревянная, ослабленная деструкцией; «здоровая». Выполнен численный расчет балок длиной 6 м и сечением 100×200 мм в программном комплексе «Лира». Расчетная модель рассматриваемых балок построена путем адаптации исходных данных для рабочей среды используемого программного комплекса. Вычислительная модель задана как объемное тело, полученное путем триангуляции и «выдавливания» проекционного разреза балки. По разработанной методике расчета деревянных балок определены касательные напряжения в приопорной зоне, а также вертикальные перемещения балок. Проведено сравнение показателей модифицированной балки и эталонной «здоровой» конструкции. Касательные напряжения в усиленной балке превышают на 15–17 % показатели «здоровой» балки. Установлено, что прочность деструктированной балки, модифицированной на опорах, увеличилась на 16–18 % по сравнению с деструктированной балкой. На основании полученных результатов определены граничные условия применения модификации деструктированных деревянных балок в опорных зонах для восстановления их несущей способности. Если потеря несущей способности составляет более 35 %, то данный способ не рекомендуется применять ввиду целесообразности замены таких конструкций.

Сведения об авторах

Д.А. Чибрикин1, аспирант; ResearcherID: ACW-3805-2022, ORCID: https://orcid.org/0000-0001-9278-4559
М.В. Лукин1, канд. техн. наук, доц.; ResearcherID: E-8085-2019, ORCID: https://orcid.org/0000-0002-2033-3473
А.В. Лукина1, канд. техн. наук, доц.; ResearcherID: O-1352-2016, ORCID: https://orcid.org/0000-0001-6065-678X
Т.В. Тюрикова2, канд. техн. наук, доц.; ResearcherID: P-8991-2019, ORCID: https://orcid.org/0000-0002-3592-310X
С.И. Рощина1, д-р техн. наук, проф.; ResearcherID: A-7722-2019, ORCID: https://orcid.org/0000-0003-0356-1383
1Владимирский государственный университет им. А.Г. и Н.Г. Столетовых, ул. Горького, д. 87, г. Владимир, Россия, 600000; dachibrikin@outlook.com*, lukin_mihail_22@mail.ru,
pismo.33@yandex.ru, rsi3@mail.ru
2Северный (Арктический) федеральный университет им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002; t.turikova@narfu.ru

Ключевые слова

численные исследования, полимерная композиция, модификация деревянной балки, прочность древесины, деревянная балка, деструкция древесины, нагружение деревянной балки, сохранение деревянной архитектуры

Для цитирования

Чибрикин Д.А., Лукин М.В., Лукина А.В., Тюрикова Т.В.,
Рощина С.И. Численное исследование напряженно-деформированного состояния модифицированной деревянной балки // Изв. вузов. Лесн. журн. 2022. № 3. С. 167–178. https://doi.org/10.37482/0536-1036-2022-3-167-178

Литература

  1. Карельский А.В., Лабудин Б.В., Мелехов В.И. Требования к надежности и безопасной эксплуатации большепролетных клееных деревянных конструкций // Изв. вузов. Лесн. журн. 2012. № 3. С. 143–147.
    Karelskiy A.V., Labudin B.V., Melekhov V.I. Reliability Requirements for the Large-Span Laminated Wood Structural Elements. Lesnoy Zhurnal = Russian Forestry Journal, 2012, no. 3, pp. 143–147. (In Russ.). http://lesnoizhurnal.ru/upload/iblock/d47/pawx2.pdf

  2. Лабудин Б.В., Морозов В.С., Орлов А.О. Компьютерный расчет напряженно-деформированного состояния узлового соединения // Вестн. ПГТУ . Сер.: Материалы. Конструкции. Технологии. 2019. № 3. С. 45–51.
    Labudin B.V., Morozov V.S., Orlov A.O. Computer Calculation of Stress-Strain State of Node Connection. Vestnik of Volga State University of Technology. Series: Materials. Constructions. Technologies, 2019, no. 3, pp. 45–51. (In Russ.). https://doi.org/10.25686/2542114X.2019.3.45

  3. Матвеев Р.П., Лабудин Б.В., Морозов В.С., Орлов А.О. Численный анализ прочности и жесткости биомеханической системы «кость – аппарат» // Экология человека. 2017. Т. 24, № 4. C. 58–64.
    Matveev R.P., Labudin B.V., Morozov V.S., Orlov A.O. Numerical Analysis of Strength and Rigidity of the Biomechanical System “Bone-Apparatus”. Ekologiya cheloveka = Human Ecology, 2017, vol. 24, no. 4, pp. 58–64. (In Russ.). https://doi.org/10.33396/17280869-2017-4-58-64

  4. Рощина С.И., Лукин М.В., Лукина А.В., Лисятников М.С. Повышение эксплуатационных свойств древесины, ослабленной биоповреждением, путем модификации клеевой композицией на основе эпоксидной смолы // Науч.-техн. вестн. Поволжья. 2014. № 4. С. 182–184.
    Roshchina S.I., Lukin M.V., Lukina A.V., Lisyatnikov M.S. Increased Performance Properties Wood Weakened Biodeterioration by Modifying the Adhesive Composition Based on an Epoxy Resin. Scientific and Technical Volga Region Bulletin, 2014, no. 4, pp. 182–184. (In Russ.).

  5. Рощина С.И., Лукин М.В., Лукина А.В., Лисятников М.С. Восстановление деревянной балки импрегнированием полимерной композицией на основе эпоксидной смолы // Лесотехн. журн. 2015. № 3(19). С. 183–190.
    Roshchina S.I., Lukin M.V., Lukinф A.V., Lisyatnikov M.S. Recovery Wooden Beams Impregnating Polymer Composition Based on Epoxy Resins. Forestry Engineering Journal, 2015, no. 3(19), pp. 183–190. (In Russ.). https://doi.org/10.12737/14167

  6. Рощина С.И., Смирнов Е.А., Лукин М.В., Лукина А.В., Грибанов А.С. Восстановление деструктивных участков опорных зон деревянных балок путем пропитки полимерным раствором // Науч.-техн. вестн. Поволжья. 2014. № 5. С. 293–296.
    Roshchina S.I., Smirnov E.A., Lukin M.V., Lukinф A.V., Gribanov A.S. Destructive Recovery Phase Reference Zone Wooden Beams by Impregnation of the Polymer Solution. Scientific and Technical Volga Region Bulletin, 2014, no. 5, pp. 293–296. (In Russ.).

  7. Adamu M., Rahman Md. R., Hamdan S., Khusairy M., Bakri B., Yusof F.A.B.M. Impact of Polyvinyl Alcohol/Acrylonitrile on Bamboo Nanocomposite and Optimization of Mechanical Performance by Response Surface Methodology. Construction and Building Materials, 2020, vol. 258, art. 119693. https://doi.org/10.1016/j.conbuildmat.2020.119693

  8. Borri A., Corradi M., Speranzini E. Reinforcement of Wood with Natural Fibers. Composites Part B: Engineering, 2013, vol. 53, pp. 1–8. https://doi.org/10.1016/j.compositesb.2013.04.039

  9. Chernova T.P., Filippov V.V., Labudin B.V., Melekhov V.I. Stress-Strain State of the Elements of a Timber-to-Timber Joint Connected by Inclined Screwed-In Rods. Environmen tal and Construction Engineering: Reality and the Future. Ed. by S.V. Klyuev, A.V. Klyuev. Springer, 2021, pp. 101–107. https://doi.org/10.1007/978-3-030-75182-1_14

  10. D’Ambrisia А., Focacci F., Luciano R. Experimental Investigation on Flexural Behavior of Timber Beams Repaired with CFRP Plates. Composite Structures, 2014, vol. 108, рр. 720–728. https://doi.org/10.1016/j.compstruct.2013.10.005

  11. Dietsch P., Kreuzinger H. Dynamic Effects in Reinforced Beams at Brittle Failure – Evaluated for Timber Members. Engineering Structures, 2020, vol. 209, art. 110018. https://doi.org/10.1016/j.engstruct.2019.110018

  12. Dietsch P., Winter S. Structural Failure in Large-Span Timber Structures: A Comprehensive Analysis of 230 Cases. Structural Safety, 2018, vol. 71, pp. 41–46. https://doi.org/10.1016/j.strusafe.2017.11.004

  13. Esmailpour A., Majidi R., Taghiyari H.R., Ganjkhani M., Mohseni Armaki S.M., Papadopoulos A.N. Improving Fire Retardancy of Beech Wood by Graphene. Polymers, 2020, vol. 12(2), art. 303. https://doi.org/10.3390/polym12020303

  14. Franke S., Franke B., Harte A.M. Failure Modes and Reinforcement Techniques for Timber Beams – State of the Art. Construction and Building Materials, 2015, vol. 97, pp. 2–13. https://doi.org/10.1016/j.conbuildmat.2015.06.021

  15. Frese M., Blaß H.J. Statistics of Damages to Timber Structures in Germany. Engineering Structures, 2011, vol. 33, iss. 11, pp. 2969–2977. https://doi.org/10.1016/j.engstruct.2011.02.030

  16. Gentile C., Svecova D., Rizkalla S.H. Timber Beams Strengthened with GFRP Bars: Development and Applications. Journal of Composites for Construction, 2002, vol. 6, iss. 1, art. 11. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(11)

  17. Khelifa M., Celzard A. Numerical Analysis of Flexural Strengthening of Timber Beams Reinforced with CFRP Strips. Composite Structures, 2014, vol. 111, рр. 393–400. https://doi.org/10.1016/j.compstruct.2014.01.011

  18. Kim Y.J., Harries K.A. Modeling of Timber Beams Strengthened with Various CFRP Composites. Engineering Structures, 2010, vol. 32, iss. 10, pp. 3225–3234. https://doi.org/10.1016/j.engstruct.2010.06.011

  19. Kolya H., Kang C.-W. Polyvinyl Acetate/Reduced Graphene Oxide-Poly (Diallyl Dimethylammonium Chloride) Composite Coated Wood Surface Reveals Improved Hydrophobicity. Progress in Organic Coatings, 2021, vol. 156, art 106253. https://doi.org/10.1016/j.porgcoat.2021.106253

  20. Koshcheev A.A., Roshchina S.I., Aleksiievets V., Labudin B.V. Local Deformation and Strength Characteristics of S-Shaped Reinforcement in Wood. IOP Conference Series: Materials Science and Engineering, 2020, vol. 896, art. 012060. https://doi.org/10.1088/1757899X/896/1/012060

  21. Koshcheev A.A., Roshchina S.I., Naichuk A.Y., Vatin N.I. The Effect of Eccentricity on the Strength Characteristics of Glued Rods Made of Steel Cable Reinforcement in Solid Wood. IOP Conference Series: Materials Science and Engineering, 2020, vol. 896, art. 012059. https://doi.org/10.1088/1757899X/896/1/012059

  22. Kreher K., Natterer J., Natterer J. Timber-Glass-Composite Girders for a Hotel in Switzerland. Structural Engineering International, 2004, vol. 14, iss. 2, pp. 149–168. https://doi.org/10.2749/101686604777963964

  23. Lukin M., Prusov E., Roshchina S., Karelina M., Vatin N. Multi-Span Composite Timber Beams with Rational Steel Reinforcements. Buildings, 2021, vol. 11, iss. 2, art. 46. https://doi.org/10.3390/buildings11020046

  24. Lukin M., Sergeev M., Lisyatnikov M. Non Split Wooden Beam Reinforced with Composite Reinforcement. Proceedings of EECE 2020. Cham, Springer, 2021, pp. 115–123. https://doi.org/10.1007/978-3-030-72404-7_12

  25. Lukina A., Roshchina S., Gribanov A. Method for Restoring Destructed Wooden Structures with Polymer Composites. Proceedings of EECE 2020. Cham, Springer, 2021, pp. 464–474. https://doi.org/10.1007/978-3-030-72404-7_45

  26. Marzi T. Nanostructured Materials for Protection and Reinforcement of Timber Structures: A Review and Future Challenges. Construction and Building Materials, 2015, vol. 97, pp. 119–130. https://doi.org/10.1016/j.conbuildmat.2015.07.016

  27. Nowak T., Jasieńko J., Kotwica E., Krzosek S. Strength Enhancement of Timber Beams Using Steel Plates – Review and Experimental Tests. Drewno, 2016, vol. 59, no. 196, pp. 75–90. http://dx.doi.org/10.12841/wood.1644-3985.150.06

  28. Orlando N., Taddia Yu., Benvenuti E., Pizzo B., Alessandri C. End-Repair of Timber Beams with Laterally-Loaded Glued-In Rods: Experimental Trials and Failure Prediction through Modelling. Construction and Building Materials, 2019, vol. 195, pp. 623–637. https://doi.org/10.1016/j.conbuildmat.2018.11.045

  29. Papadopoulos A.N., Bikiaris D.N., Mitropoulos A.C., Kyzas G.Z. Nanomaterials and Chemical Modifications for Enhanced Key Wood Properties: A Review. Nanomaterials, 2019, vol. 9, iss. 4, art. 607. https://doi.org/10.3390/nano9040607

  30. Raftery G.M., Harte A.M. Low-Grade Glued Laminated Timber Reinforced with FRP Plate. Composites Part B: Engineering, 2011, vol. 42, iss. 4, pp. 724–735. https://doi.org/10.1016/j.compositesb.2011.01.029

  31. Raftery G.M., Whelanb C. Low-Grade Glued Laminated Timber Beams Reinforced Using Improved Arrangements of Bonded-In GFRP Rods. Construction and Building Materials, 2014, vol. 52, рр. 209–220. https://doi.org/10.1016/j.conbuildmat.2013.11.044

  32. Sergeev M.S., Gribanov A.S., Roschina S.I. The Stress Strain State of Composite Multi-Span Beams. IOP Conference Series: Materials Science and Engineering, 2020, vol. 753, art. 032068. https://doi.org/10.1088/1757-899X/753/3/032068

  33. Sergeev M., Rimshin V., Lukin M., Zdralovic N. Multi-Span Composite Beam. IOP Conference Series: Materials Science and Engineering, 2020, vol. 896, art. 012058. https://doi.org/10.1088/1757-899X/896/1/012058

  34. Stupnicki J. Analysis of the Behavior of Wood under External Load, Based on a Study of the Cell Structure. Acta Polytechnica Scandinavica Civil Engineering and Building Construction Series, 1962, vol. 53. 19 p.

  35. Teng T.-J., Mat Arip M.N., Sudesh K., Nemoikina A., Jalaludin Z., Ng E.-P., Lee H.-L. Conventional Technology and Nanotechnology in Wood Preservation: A Review. BioResources, 2018, vol. 13, no. 4, pp. 9220–9252. https://doi.org/10.15376/biores.13.4.Teng

  36. Vlad-Cristea M., Riedl B., Blanchet P., Jimenez-Pique E. Nanocharacterization Techniques for Investigating the Durability of Wood Coatings. European Polymer Journal, 2012, vol. 48, iss. 3, pp. 441–453. https://doi.org/10.1016/j.eurpolymj.2011.12.002

  37. Yahyaei-Moayyed M., Taheri F. Experimental and Computational Investigations into Creep Response of AFRP Reinforced Timber Beams. Composite Structures, 2011, vol. 93, iss. 2, pp. 616–628. https://doi.org/10.1016/j.compstruct.2010.08.017