Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: 8(8182) 21-61-18 архив |
Н.А. Макаревич Рубрика: Химическая переработка древесины Скачать статью (pdf, 0.7MB )УДК519.2+519.6:541.64:544.23.02:547.458.84АннотацияПредложено ввести обобщенный фактор неидеальности систем g в уравнения информационной энтропии, описывающие самоорганизованные структуры существенно неравновесных систем с приложением для изучения топологических свойств высокомолекулярных соединений в растворах на примере лигнинов древесины. Фактор g как относительная термодинамическая характеристика связывает идеальную и реальную модели систем, в которых можно выделить два конкурентных (противоположных по знаку и действию) процесса: порядок (–) ↔ хаос (+); притяжение (–) ↔ отталкивание (+); сжатие (–) ↔ расширение (+); кластеризация (–) ↔ распад (+) и т. д. g = 1 + 〈– βord + αnord〉 = 1 + 〈– pi (β) + pi (α)〉, где – βord ≡ 1/nΣinβi и αnopd ≡ 1/nΣinαi – относительные средние характеристики (pi – статистические вероятности) противоположно протекающих процессов. Фактор g изменяется в интервале 0 ≤ g ≤ 2 и зависит от того, какой из конкурентных процессов превалирует. При αnord = 0 g → 0, при βord = 0 g→2, при g = 1 поведение элементов системы будет идеальным. Фактор g вводится в любые классические уравнения, пригодные для изучения идеальных систем, в целях использования их для описания реальных систем (например, в уравнения Генри, Рауля, Вант-Гоффа, состояния идеального газа и т. д). Строго математически фактор g определен через величины М – мера, ε – масштаб, d – размерность в виде отношения логарифмов мер реального (М*) и идеального (М0) состояний объекта: g = lnМ*/lnМ0 = d/D, где М* и М0 может быть Nd – число элементов в структуре фрактального реального (например, кластера) или математического объекта (например, салфетка Серпинского) и ND – число элементов в структуре объекта в идеальном состоянии, обладающих свойством многомасштабности и самоподобия (d и D – фрактальная и евклидова размерности). Как термодинамическая характеристика gth определяется отношением термодинамических функций, функционалов, например, ΔGi*/ΔGi, где ΔGi* = –RTlnаi – реального и ΔGi = –RTlnNi – идеального состояний; количеством молей n* – реального состояния вещества к n – идеальному; относительными энтропиями системы ΔSreal/ΔSid. Получены новые выражения информационных и термодинамических энтропий с дольным (0:1) моментом порядка – энтропийным gS и термодинамическим gth факторами неидеальности для анализа самоорганизованных квазиравновесных структур в формализме Реньи: SgSM–Rn(p) = R/(1 – gS)lnΣNipgSi; SgthM–Rn = R/(gth)ln(ΣNi=1pigth – 1). В формализме Тсаллиса SgSM–TS (p) = R(1 – ΣiN(ε)pigS)/(gS – 1); SgthM–TS (p) = R(1 – ΣiN(ε)pi1–gth)/gth с приложением для изучения топологических свойств высокомолекулярных соединений методами гидродинамики, а также термодинамики растворов полимеров.Сведения об авторахН.А. Макаревич1,2, д-р хим. наук, проф.; ResearcherID: ABF-6367-2020, ORCID: https://orcid.org/0000-0002-9595-03451Учреждение образования «Военная академия Республики Беларусь», просп. Независимости, д. 220, Минск, Республика Беларусь, 220000; e-mail: nikma@tut.by 2Северный (Арктический) федеральный университет им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002 Ключевые словафактор неидеальности систем, фрактальные структуры, фрактальная размерность, информационная и термодинамическая энтропия, растворы полимеров, термодинамика растворов полимеров, лигниныДля цитированияМакаревич Н.А. Фактор неидеальности в энтропийно-мультифрактальном анализе самоорганизованных структур растительных полимеров (лигнинов) // Изв. вузов. Лесн. журн. 2021. № 2. С. 194 –212. DOI: 10.37482/0536-1036-2021-2-194-212Литература1. Афанасьев Н.И. Структура макромолекул в растворах, на границах раздела фаз и поверхностно-активные свойства лигносульфонатов: дис. … д-ра. хим. наук. СПб.: ЛТА, 1996. 302 с. [Afanas’yev N.I. Structure of Macromolecules in Solutions and at the Phase Boundaries, the Surface-Active Properties of Lignosulfonates: Dr. Chem. Sci. Diss. Saint Petersburg, LTA Publ., 1996. 302 p.]. 2. Афанасьев Н.И., Коробова Е.Н., Ферофонтова С.Д. Межмолекулярные взаимодействия в растворах лигносульфонатов // Изв. вузов. Лесн. журн. 1996, № 1-2. С. 110–117. [Afanas’yev N.I., Korobova E.N., Ferofontova S.D. Intermolecular Interactions in Solutions of Lignosulfonates. Lesnoy Zhurnal [Russian Forestry Journal], 1996, no. 1-2, pp. 110–117]. URL: http://lesnoizhurnal.ru/upload/iblock/c80/142_148.pdf 3. Башкиров А.Г. Энтропия Реньи как статистическая энтропия для сложных систем // ТМФ. 2006. Т. 149, № 2. С. 299–317. [Bashkirov A.G. Renyi Entropy as a Statistical Entropy for Complex Systems. Teoreticheskaya i Matematicheskaya Fizika [Theoretical and Mathematical Physics], 2006, vol. 149, no. 2, pp. 299–317]. DOI: 10.4213/tmf4235 4. Боголицын К.Г., Лунин В.В., Косяков Д.С., Карманов А.П., Скребец Т.Э. и др. Физическая химия лигнина. M.: Академкнига, 2010. 492 с. [Bogolitsyn K.G., Lunin V.V., Kosyakov D.S., Karmanov A.P., Skrebets T.E. et al. Physical Chemistry of Lignin. Moscow, Akademkniga Publ., 2010. 492 p.]. 5. Бриллюэн Л. Научная неопределенность и информация. М.: Мир, 1966. 272 c. [Brillouin L. Scientific Uncertainty and Information. Translated from English. Moscow, Mir Publ., 1966. 272 p.]. DOI: 10.1016/C2013-0-12512-3 6. Будтов В.П. Физическая химия растворов полимеров. СПб.: Химия, 1992. 384 с. [Budtov V.P. Physical Chemistry of Polymer Solutions. Saint Petersburg, Khimiya Publ., 1992. 384 p.]. 7. Зарипов Р.Г. Информация различия и переходы беспорядок−порядок. Казань: Изд-во Казан. гос. техн. ун-та, 1999. 155 с. [Zaripov R.G. Discrimination Information and Disorder − Order Transitions. Kazan, KSTU Publ., 1999. 155 p.]. 8. Зубарев Д.Н., Морозов В.Г., Репке Г. Статистическая механика неравновесных процессов. М.: Физматлит, 2002. 432 с. [Zubarev D.N., Morozov V.G., Repke G. Statistical Mechanics of Nonequilibrium Processes. Moscow, Fizmatlit Publ., 2002. 432 p.]. 9. Карманов А.П. Самоорганизация и структурная организация лигнина. Екатеринбург: УрО РАН, 2004. 270 с. [Karmanov A.P. Self-Organization and Structural Organization of Lignin. Yekaterinburg, UB RAS Publ., 2004. 270 p.]. 10. Карманов А.П., Матвеев Д.В., Монаков Ю.Б. Динамика полимерных мономерных предшественников гваяцильных лигнинов // Докл. АН. 2001. Т. 380, № 5. С. 635–638. [Karmanov A.P., Matveyev D.V., Monakov Yu.B. The Dynamic of the Polymerization of Monomeric Precursors of Guaicyl Lignins. Doklady Akademii Nauk, 2001, vol. 380, no. 5, pp. 635–638]. 11. Карманов А.П., Кузьмин Д.В., Шамшина И.Н., Беляев В.Ю., Кочева Л.С., Матвеев Д.В., Монаков Ю.Б. Исследование гидродинамических и конформационных свойств лигнинов из древесных растений Sorbus aucuparia и Robinia pseudoacacia // Высокомолекулярные соединения. Сер. А: Физика полимеров. 2004. Т. 46, № 6. С. 997–1004. [Karmanov A.P., Kuz’min D.V., Shamshina I.N., Belyaev V.Yu., Kocheva L.S., Matveev D.V., Monakov Yu.B. Hydrodynamic and Conformational Properties of Lignins from Sorbus aucuparia and Robinia pseudoacacia Woody Plants. Vysokomolekulyarnyye soyedineniya. Seriya A: Fizika polimerov [Polymer Science. Series A - Polymer Physics], 2004, vol. 46, no. 6, pp. 997–1004]. 12. Климонтович Ю.Л. Статистическая теория открытых систем. Т. 1. М.: Янус, 1995. 624 c. [Klimontovich Yu.L. Statistical Theory of Open Systems. Vol. 1. Moscow, Yanus Publ., 1995. 624 p.]. 13. Колесниченко А.В., Маров М.Я. Турбулентность и самоорганизация. Проблемы моделирования космических и природных сред. М.: БИНОМ. Лаборатория знаний, 2014. 632 с. [Kolesnichenko A.V., Marov M.Ya. Turbulence and Self-Organization. Problems of Modeling Space and Natural Environments. Moscow, BINOM. Laboratoriya znaniy Publ., 2014. 632 p.]. 14. Макаревич Н.А. Фактор неидеальности в классических уравнениях для реальных газов и конденсированных систем: универсальный ассоциативно-ионизационный множитель в классических уравнениях для растворов неэлектролитов и электролитов // Докл. АН Беларуси. 2016. Т. 60, № 1. C. 94–101. [Makarevich N.A. Non-Ideality Factor in the Classical Equations for Real Gases and Condensed Systems: Universal Associative-Ionized Multiplier in the Classical Equations for Solutions of Nonelectrolytes and Electrolytes. Doklady Nacional’noj akademii nauk Belarusi [The Doklady of the National Academy of Sciences of Belarus], 2016, vol. 60, no. 1, pp. 94–101]. 15. Макаревич Н.А. Межфазная граница «газ–жидкость–твердое тело»: моногр. Архангельск: САФУ, 2018. 411 с. [Makarevich N.A. Interface “Gas−Liquid− Solid”: Monograph. Arkhangelsk, NArFU Publ., 2018. 411 p.]. 16. Полак Л.С., Михайлов А.С. Самоорганизация в неравновесных физико-химических процессах. М.: Наука, 1975. 351 c. [Polak L.S., Mikhaylov A.S. Self-Organization in Nonequilibrium Physical and Chemical Processes. Moscow, Nauka Publ., 1975. 351 p.]. 17. Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур. М.: Мир, 2002. 461 с. [Prigogine I., Kondepudi D. Modern Thermodynamics. From Heat Engines to Dissipative Structures. Translated from English. Moscow. Mir Publ., 2002. 461 p.]. 18. Федер Е. Фракталы. М.: Мир, 1991. 254 с. [Feder J. Fractals. Translated from English. Moscow, Mir Publ., 1991. 254 p.]. DOI: 10.1007/978-1-4899-2124-6 19. Цветков В.Н., Лавренко П.Н., Бушин С.В. Гидродинамический инвариант полимерных молекул // Успехи химии. 1982. Т. 51, № 10. С. 1698–1732. [Tsvetkov V.N., Lavrenko P.N., Bushin S.V. A Hydrodynamic Invariant of Polymer Molecules. Uspekhi khimii [Russian Chemical Reviews], 1982, vol. 51, no. 10, pp. 1698–1732]. DOI: 10.1070/RC1982v051n10ABEH002935 20. Цветков В.Н., Эскин В.Е., Френкель С.Я. Структура макромолекул в растворах. М.: Наука, 1964. 720 с. [Tsvetkov V.N., Eskin V.E., Frenkel’ S.Ya. Structure of Macromolecules in Solutions. Moscow, Nauka Publ., 1964. 720 p.]. 21. BBI JU Strengthens Collaboration on Sustainable Bioeconomy with the European Forest Institute. Materials of the Bio-Based Industries Joint Undertaking Website. 2020. Available at: https://www.bbi.europa.eu/news/bbi-ju-strengthens-collaboration-sustainablebioeconomy-european-forest-institute (accessed 23.12.19). 22. Cohen E.G.D. Superstatistics. Physica D: Nonlinear Phenomena, 2004, vol. 193, iss. 1-4, pp. 35–52. DOI: 10.1016/j.physd.2004.01.007 23. Efimova E.A., Ivanov A.O., Camp P.J. Thermodynamic Properties of Ferrofluids in Applied Magnetic Fields. Physical Review E, 2013, vol. 88, iss. 4, art. 042310. DOI: 10.1103/PhysRevE.88.042310 24. Jaynes E.T. Information Theory and Statistical Mechanics. Brandeis University Summer Institute Lectures in Theoretical Physics. Vol. 3 – Statistical Physics. New York, W.A. Benjamin Inc., 1963, pp. 181–218. 25. Joslin C., Goldman S. The Third Dielectric and Pressure Virial Coefficients of Dipolar Hard Sphere Fluids: II. Numerical Results. Molecular Physics, 1993, vol. 79, iss. 3, pp. 499–514. DOI: 10.1080/00268979300101401 26. Karmanov A.P., Monakov Yu.B. Hydrodynamic Properties and Structure of Lignin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2000, vol. 48, iss. 2, pp. 151–175. DOI: 10.1080/00914030008050614 27. Karmanov A.P., Poleschikov S.M., Kocheva L.S. Theoretical and Experimental Simulation of Lignin Biosynthesis. Butlerovskiye soobshcheniya [Butlerov Communications], 2015, vol. 41, no. 3, pp. 147–151. DOI: 10.37952/ROI-jbc-01/15-41-3-147 28. Kullback S., Leibler R.A. On Information and Sufficiency. The Annals of Mathematical Statistics, 1951, vol. 22, iss. 1, pp. 79–86. DOI: 10.1214/aoms/1177729694 29. Maher P. Explication of Inductive Probability. Journal of Philosophical Logic, 2010, vol. 39, iss. 6, pp. 593–616. DOI: 10.1007/s10992-010-9144-4 30. Naimark O.B. Defect-Induced Transitions as Mechanisms of Plasticity and Failure in Multifield Continua. Advances in Multifield Theories of Continua with Substructure. Ed. by G. Capriz, P. Mariano. Boston, MA, Birkhäuser, 2004, pp. 75–114. DOI: 10.1007/978-0-8176-8158-6_4 31. Pavlos G.P. Complexity Theory, Time Series Analysis and Tsallis q-Entropy Principle Part One: Theoretical Aspects. Journal of the Mechanical Behavior of Materials, 2017, vol. 26, no. 5-6, pp. 139–180. DOI: 10.1515/jmbm-2017-0023 32. Rényi A. Probability Theory. North-Holland, Amsterdam, 1970. 670 p. 33. Szilard L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Zeitschrift für Physik, 1929, vol. 53, iss. 11-12, pp. 840–856. DOI: 10.1007/BF01341281 34. Tsallis C. Possible Generalization of Boltzmann-Gibbs Statistics. Journal of Statistical Physics, 1988, vol. 52, pp. 479–487. DOI: 10.1007/BF01016429 35. Wohlgemuth R., Twardowski T., Aguilar A. Bioeconomy Moving forward Step by Step – A Global Journey. New Biotechnology, 2021, vol. 61, pp. 22–28. DOI: 10.1016/j.nbt.2020.11.006 Ссылка на английскую версию:Non-Ideality Factor in Multifractal and Entropy-Based Analysis of Self-Organized Structures of Plant Polymers (Lignins)
NON-IDEALITY FACTOR IN MULTIFRACTAL AND ENTROPY-BASED ANALYSIS OF SELF-ORGANIZED STRUCTURES OF PLANT POLYMERS (LIGNINS) Nikolay A. Makarevich1,2, Doctor of Chemistry, Prof.; ResearcherID:ABF-6367-2020, ORCID: https://orcid.org/0000-0002-9595-0345 1Military Academy of the Republic of Belarus, prosp. Nezavisimosti, 220, Minsk, 220000, Republic of Belarus; e-mail: nikma@tut.by 2Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation Abstract. An attempt has been made to introduce the generalized non-ideality factor of systems g (GNF) into information entropy equations that describe self-organized structures of essentially nonequilibrium systems with the use of studying the topological properties of high molecular weight compounds in solutions using wood lignins as an example. The factor g as a relative thermodynamic characteristic connects the ideal and real models of systems in which two competitive (opposite in sign and action) processes can be distinguished: order (−) ↔ chaos (+); attraction (−) ↔ repulsion (+); compression (−) ↔ extension (+); clustering (−) ↔ decay (+), etc. g = 1 + 〈– βord + αnord〉 = 1 + 〈– pi (β) + pi (α)〉, где – βord ≡ 1/nΣinβi и αnopd ≡ 1/nΣinαi are relative average characteristics (pi – probabilities) of oppositely occurring processes. The factor g varies in the interval 0≤ g ≥1 and depends on which of the competitive processes prevails. For αnord = 0 g → 0, for βord = 0 g→2, for g = 1 the behavior of the elements of the system will be ideal. The factor g is introduced into any classical equations suitable for studying ideal systems with the aim of using them to describe real systems (for example, the equations of Henry, Raoult, Van’t Hoff, general gas, etc.). Strictly mathematically, the factor g is defined through the values M – measure, ε – size (scale), and d – dimension as a ratio of logarithms of measures of real (М*) and ideal (М0) states of the object: gth = lnМ*/lnМ0 = d/D, where M* and M0 can be the number of elements in the structure of the fractal real (for example, cluster) or mathematical object (for example, Sierpiński triangle) Nd and the number of elements in the structure of the object in the perfect condition, having the property of multi-scale and self-similarity, ND, where d and D are the fractal and Euclidean dimensions. As a thermodynamic characteristic gth is defined by the ratio of thermodynamic functions, functionals, for example, ΔGi*/ΔGi, where ΔGi* = –RTlnаi is real and, ΔGi = –RTlnNi is ideal state; the number of moles of n* − real state of matter to n − ideal state of matter; relative entropies of the system ΔSreal/ΔSid (ΔSid − Boltzmann entropy). New expressions of the information and thermodynamic entropies with a fractional (0:1) moment of order and with the entropic gS and gth non-ideality factors are obtained for the analysis of self-organized quasi-equilibrium structures in the Renyi formalism SgSM–Rn(p) = R/(1 – gS)lnΣNipgSi; SgthM–Rn = R/(gth)ln(ΣNi=1pigth – 1); in the Tsallis formalism SgSM–TS (p) = R(1 – ΣiN(ε)pigS)/(gS – 1); SgthM–TS (p) = R(1 – ΣiN(ε)pi1–gth)/gth with an application for studying the topological properties of high-molecular compounds by hydrodynamic methods, as well as the thermodynamics of polymer solutions. For citation: Makarevich N.A. Non-Ideality Factor in Multifractal and Entropy-BasedAnalysis of Self-Organized Structures of Plant Polymers (Lignins). Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 2, pp. 194–212. DOI: 10.37482/0536-1036-2021-2-194-212 Keywords: non-ideality factor of systems, fractal structures, fractal dimensionality, information and thermodynamic entropy, polymer solutions, thermodynamics of polymer solutions, lignins.
Автор заявляет об отсутствии конфликта интересов |