Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Физико-механические характеристики термодревесной композиции из древесины сосны при баротермической обработке

Версия для печати

Ю.Г. Скурыдин, Е.М. Скурыдина, Р.Г. Сафин, А.Р. Хабибуллина

Рубрика: Механическая обработка древесины

Скачать статью (pdf, 0.6MB )

УДК

674.8:674.049.2

Аннотация

Направление исследования – формирование представлений о структуре и свойствах композитных материалов, получаемых на основе древесины сосны, а также о процессах, происходящих в структуре древесной ткани. Изучено влияние условий баротермической обработки образцов цельной древесины сосны обыкновенной методом взрывного автогидролиза на плотность, прочностные и гидрофобные характеристики термодревесной композиции, получаемой горячим прессованием. Обработка древесины выполнена в разных условиях фактора жесткости взрывного автогидролиза – при температуре 200 ОС и продолжительности процесса от 0,08 до 10 мин. Установлено, что увеличение фактора жесткости гидролиза снижает плотность гидролизованной древесины от 440 до ~350 кг/м3. При выбранных параметрах обработки не происходит фрагментации образцов. Горячее прессование гидролизованной древесины, полученной в условиях незначительной или умеренной жесткости, сопровождается линейным увеличением плотности термодревесного композитного материала от ~440 до 500 кг/м3. Следствием дальнейшего роста жесткости является замедление темпов повышения плотности композитного материала. Условная граница, определяющая достижение максимального количества сшитых межмолекулярных структур в этом материале, соответствует фактору жесткости 3000…4500 мин. Более жесткие условия обработки вызывают интенсификацию процессов термической деструкции. Зависимость гидрофобных характеристик от жесткости условий баротермической обработки носит сложный характер. При факторе жесткости 1000...3000 мин наблюдается точка экстремума, до достижения которой гидрофобные показатели материала ухудшаются. Его водопоглощение возрастает от 50 до 130 %, а разбухание – от 15 до 54 %. После достижения точки экстремума гидрофобные показатели значительно улучшаются. Водопоглощение снижается до ~20 %, разбухание – до ~10 %. Мягкие условия гидролиза не приводят к получению материала со стабильно высокими гидрофобными показателями. Образующихся сшитых структур недостаточно для формирования прочной и водостойкой композиции, вследствие чего ухудшаются гидрофобные характеристики. Возрастание жесткости гидролиза увеличивает количество активных компонентов. Образующиеся при прессовании дополнительные межмолекулярные связи улучшают гидрофобные характеристики. Полученные результаты могут быть использованы при создании моделей процессов, происходящих в структуре лигноцеллюлозного вещества при взрывном автогидролизе и получении композитных материалов, при определении оптимальных параметров баротермической обработки для изготовления композитных материалов с заданными физико-механическими характеристиками. Баротермическая обработка цельной древесины сосны методом взрывного автогидролиза способствует появлению в структуре древесной ткани химически активных компонентов, на количество которых влияет жесткость условий обработки. Свойства получаемого термодревесного композитного материала находятся в зависимости от условий процесса.

Сведения об авторах

Ю.Г. Скурыдин1, канд. техн. наук, доц.; ResearcherID:AAE-1212-2019, ORCID: https://orcid.org/0000-0002-1852-2152
Е.М. Скурыдина2, канд. техн. наук, доц.; ResearcherID: AAB-4572-2021, ORCID: https://orcid.org/0000-0002-1707-8846
Р.Г. Сафин3, д-р техн. наук, проф.; ResearcherID: Q-8575-2017, ORCID: https://orcid.org/0000-0002-5790-4532
А.Р. Хабибуллина3, канд. техн. наук, доц.; ResearcherID: AAB-5176-2021, ORCID: https://orcid.org/0000-0002-0762-8816
1Алтайский государственный университет, просп. Ленина, д. 61, г. Барнаул, Россия, 656049; e-mail: skur@rambler.ru
2Алтайский государственный педагогический университет, ул. Молодежная, д. 55, г. Барнаул, Россия, 656031; e-mail: skudem@rambler.ru
3Казанский национальный исследовательский технологический университет, ул. К. Маркса, д. 68, г. Казань, Россия, 420015; e-mail: safin@kstu.ru, almira-h@rambler.ru

Ключевые слова

древесина, сосна, взрывной автогидролиз, баротермическая обработка, композитный материал, термодревесная композиция, водопоглощение, разбухание по толщине, плотность, прочность

Для цитирования

Скурыдин Ю.Г., Скурыдина Е.М., Сафин Р.Г., Хабибуллина А.Р.
Физико-механические характеристики термодревесной композиции из древесины сосны при баротермической обработке // Изв. вузов. Лесн. журн. 2021. № 2. С. 143–155. DOI: 10.37482/0536-1036-2021-2-143-155

Литература

1. А. с. 157092 СССР, МПК B 27d. Способ изготовления, например, элементов мебели путем горячего прессования пакета: № 774921/29-14: заявл. 20.04.1962: опубл. 01.01.1963 / З.Р. Балтпурвиньш, Г.В. Берзинь, Ф.А. Шнюцинь, А.П Николаев, Э.А. Микит, И.Я. Зелтынь, М.А. Экс. [Baltpurvin’sh Z.R., Berzin’ G.V., Shnyutsin’ F.A., Nikolayev A.P., Mikit E.A., Zeltyn’ I.Ya., Eks M.A. A Method of Manufacturing, for Example, Furniture Items by Hot Pressing a Package. Certificate of Authorship USSR no. SU 157092 A1, 1963].

2. А. с. 251818 СССР, МПК B 29j. Способ получения древесных пластиков: № 1132829/29-33: заявл. 13.02.1967: опубл. 06.01.1970 / Г.В. Берзиньш, М.С. Мовнин, А.И. Калниньш, Э.Я. Слагис, Н.А. Модин, Я.К. Гулбис, З.Р. Балтпурвиньш, А.З. Зиемелис. [Berzin’sh G.V., Movnin M.S., Kalnin’sh A.I., Slagis E.Ya., Modin N.A., Gulbis Ya.K., Baltpurvin’sh Z.R., Ziyemelis A.Z. Method for Producing Wood Plastics. Certificate of Authorship USSR no. SU 251818 A1, 1970].

3. А. с. 313675 СССР, МПК B 27m 1/02. Способ изготовления уплотненной древесины: № 1389620/29-33: заявл. 30.12.1969: опубл. 07.09.1971 / М.С. Мовнин, Н.А. Модин, А.Н. Ерошкин, А.Г. Ермолович, Г.В. Берзиньш. [Movnin M.S., Modin N.A., Eroshkin A.N., Ermolovich A.G., Berzin’sh G.V. Method for Manufacturing Densified Wood. Certificate of Authorship USSR no. SU 313675 A1, 1971].

4. А. с. 315610 СССР, МПК B 27m 3/04. Способ изготовления торцевой шашки: № 1397927/29-33: заявл. 05.01.1970: опубл. 01.10.1971 / М.С. Мовнин, А.Н. Ерошкин, Н.А. Модин, В.Я. Капустин, Е.И. Швец, Ю.Н. Файнгольд. [Movnin M.S., Eroshkin A.N., Modin N.A., Kapustin V.Ya, Shvets E.I., Fayngol’d Yu.N. Method for Manufacturing a Wood Block. Certificate of Authorship USSR no. SU 315610 A1, 1971].

5. А. с. 370050 СССР, МПК B 27m 1/02. Способ уплотнения древесины: № 1687605/29-33: заявл. 12.07.1971: опубл. 15.02.1973 / М.С. Мовнин, Н.А. Модин, А.Н. Ерошкин, Л.И. Янтовский, А.Б. Израелит, М.П. Янтовская. [Movnin M.S., Modin N.A., Eroshkin A.N., Yantovskiy L.I., Izrayelit A.B., Yantovskaya M.P. Wood Densification Method. Certificate of Authorship USSR no. SU 370050 A1, 1973].

6. А. с. 493716 СССР, МПК G 01n 25/56. Способ определения оптимальной температуры горячего прессования древесных пластиков: № 2003887/26-25: заявл. 11.03.1974; опубл. 30.11.1975 / В.В. Желдакова, В.Н. Петри. [Zheldakova V.V., Petri V.N. Method for Determining the Optimum Temperature for Hot Pressing of Wood Plastics. Certificate of Authorship USSR no. SU 493716 A1, 1975].

7. А. с. 931499 СССР, МПК B 44 C 1/24. Способ получения декоративного изображения на поверхности древесного изделия: № 2996524/28-12: заявл. 14.07.1980: опубл. 30.05.1982 / А.Г. Ермолович. [Ermolovich A.G. A Method of Producing a Decorative Image on the Surface of a Wood Product. Certificate of Authorship USSR no. SU 931499 A1, 1982].

8. Буглай Б.М. Технология отделки древесины. М.: Лесн. пром-сть, 1973. 304 с. [Buglay B.M. Technology of Wood Fashioning. Moscow, Lesnaya promyshlennost’ Publ., 1973. 304 p.].

9. Винник Н.И. Модифицированная древесина. М.: Лесн. пром-сть, 1980. 160 с. [Vinnik N.I. Modified Wood. Moscow, Lesnaya promyshlennost’ Publ., 1980. 160 p.].

10. Винник Н.И., Корыстин Л.Н. Промышленное производство прессованной древесины. М.: Лесн. пром-сть, 1964, 140 с. [Vinnik N.I., Korystin L.N. Industrial Production of Pressed Wood. Moscow, Lesnaya promyshlennost’ Publ., 1964. 140 p.].

11. ГОСТ 16483.7–71. Древесина. Методы определения влажности (с изменениями № 1–3). М.: Стандартинформ, 2006. 5 с. [State Standard. GOST 16483.7–71. Wood. Methods for Determination of Moisture Content. Moscow, Standartinform Publ., 2006. 5 p.].

12. ГОСТ 19592–80. Плиты древесноволокнистые. Методы испытаний. М.: Изд-во стандартов, 1987. 15 с. [State Standard. GOST 19592–80. Fibre Boards. Test Methods. Moscow, Izdatel’stvo standartov, 1987. 15 p.].

13. ГОСТ 24104–2001. Весы лабораторные. Общие технические требования. М.: Изд-во стандартов, 2002. 11 с. [State Standard. GOST 24104–2001. Laboratory Scales. General Technical Requirements. Moscow, Izdatel’stvo standartov, 2002. 11 p.].

14. ГОСТ 6507–90. Микрометры. Технические условия (с изменением № 1). М.: Изд-во стандартов, 2004. 21 с. [State Standard. GOST 6507–90. Micrometers. Specifications. Moscow, Izdatel’stvo standartov, 2004. 21 p.].

15. ГОСТ 7855–84. Машины разрывные и универсальные для статических испытаний металлов и конструкционных пластмасс. Типы. Основные параметры. Общие технические требования (с изменениями № 1, 2). М.: Изд-во стандартов, 1990. 12 с. [State Standard. GOST 7855–84. Tensile Testing Machines and Universal Testing Machines for Static Tests of Metals and Structural Plastics. Types. Main Parameters. General Technical Requirements. Moscow, Izdatel’stvo standartov, 1990. 12 p.].

16. Грибенчикова А.В. Материаловедение в производстве древесных плит и пластиков. М.: Лесн. пром-сть, 1988. 120 с. [Gribenchikova A.V. Materials Science in the Production of Wood-Based Panels and Plastics. Moscow, Lesnaya promyshlennost’ Publ., 1988. 120 p.].

17. Леса СССР. Т. 4: Леса Урала, Сибири и Дальнего Востока / гл. ред. А.Б. Жуков. М.: Наука, 1969. 768 с. [Forests of the USSR. Vol. 4. Forests of the Urals, Siberia and the Far East. Editor-in-Chief A.B. Zhukov. Moscow, Nauka Publ., 1969. 768 p.].

18. Прието Дж., Кине Ю. Древесина. Обработка и декоративная отделка. М.: Пэйнт-медиа, 2008. 392 с. [Prieto J., Kiene J. Holzbeschichtung: Chemie und Praxis [Wood Coatings]. Translated from German. Moscow, Paint-Media Publ., 2008. 392 p].

19. Просвирников Д.Б., Сафин Р.Г., Садртдинов А.Р. Технология паровзрывной обработки лигноцеллюлозных материалов: моногр. Казань: Изд-во КНИТУ, 2015. 139 с. [Prosvirnikov D.B., Safin R.G., Sadrtdinov A.R. Technology of Steam Blasting of Lignocellulosic Materials: Monograph. Kazan, KSTU Publ., 2015. 139 p.].

20. Сафин Р.Г., Просвирников Д.Б., Тимербаев Н.Ф. Разработка технологии получения химических волокон из растительного целлюлозосодержащего сырья // Изв. вузов. Технология текстильной промышленности. 2018. № 3(375). С. 68–74. [Safin R.G., Prosvirnikov D.B., Timerbaev N.F. Development of Technology for Obtaining Chemical Fibers from Plant Cellulose-Containing Raw Materials. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil’noi Promyshlennosti [Proceedings of Higher Educational Institutions. Textile Industry Technology], 2018, vol. 3(375), pp. 68–74.].

21. Скурыдин Ю.Г. Строение и свойства композиционных материалов, полученных из отходов древесины после взрывного гидролиза: дис. … канд. техн. наук. Барнаул, 2000. 147 с. [Skurydin Yu.G. Structure and Properties of Composite Materials Obtained from Wood Wastes after Explosive Hydrolysis: Cand. Eng. Sci. Diss. Barnaul, 2000. 147 p.].

22. Скурыдина Е.М. Разработка технологии композиционных материалов на основе древесины и полимерных наполнителей: дис. … канд. техн. наук. Барнаул, 2006. 170 с. [Skuridina E.M. Development of the Technology of Composite Materials Based on Wood and Polymer Fillers: Cand. Eng. Sci. Diss. Barnaul, 2006. 170 p.].

23. Старцев О.В., Салин Б.Н., Скурыдин Ю.Г. Баротермический гидролиз древесины в присутствии минеральных кислот // Докл. АН. Химическая технология. 2000. Т. 370, № 5. С. 638–641. [Startsev O.V., Salin B.N., Skurydin Yu.G. Barothermal Hydrolysis of Wood in Presence of Mineral Acids. Doklady Akademii Nauk. Khimicheskaya tekhnologiya [Doklady Chemistry], 2000, vol. 370, no. 5, pp. 638–641].

24. Хрулев В.М. Модифицированная древесина в строительстве. М.: Стройиздат, 1986. 112 с. [Khrulev V.M. Modified Wood in Construction. Moscow, Stroyizdat Publ., 1986. 112 p.].

25. Шейдин И.А., Пюдин П.Э. Технология производства древесных пластиков и их применение. М.: Лесн. пром-сть, 1971. 264 с. [Sheydin I.A., Pyudin P.E. Wood Plastics Production Technology and Their Application. Moscow, Lesnaya promyshlennost’ Publ., 1971. 264 p.].

26. Abatzoglou N., Chornet E., Belkacemi K., Overend R.P. Phenomenological Kinetics of Complex Systems: The Development of a Generalized Severity Parameter and Its Application to Lignocellulosics Fractionation. Chemical Engineering Science, 1992, vol. 47, iss. 5, pp. 1109–1122. DOI: 10.1016/0009-2509(92)80235-5

27. Anglès M.N., Ferrando F., Farriol X., Salvadó J. Suitability of Steam Exploded Residual Softwood for the Production of Binderless Panels. Effect of the Pre-Treatment Severity and Lignin Addition. Biomass and Bioenergy, 2001, vol. 21, iss. 3, pp. 211–224. DOI: 10.1016/S0961-9534(01)00031-9

28. Asada C., Sasaki C., Uto Y., Sakafuji J., Nakamura Y. Effect of Steam Explosion Pretreatment with Ultra-High Temperature and Pressure on Effective Utilization of Softwood Biomass. Biochemical Engineering Journal, 2012, vol. 60, pp. 25–29. DOI: 10.1016/j.bej.2011.09.013

29. Ewanick S., Bura R. Hydrothermal Pretreatment of Lignocellulosic Biomass. Bioalcohol Production. Ed. by K. Waldron. Oxford, Woodhead, 2010, pp. 3–23. DOI: 10.1533/9781845699611.1.3

30. Focher B., Marzetti A., Beltrame P.L., Avella M. Steam Exploded Biomass for the Preparation of Conventional and Advanced Biopolymer-Based Materials. Biomass and Bioenergy, 1998, vol. 14, iss. 3, pp. 187–194. DOI: 10.1016/S0961-9534(97)10046-0

31. Halvarsson S., Edlund H., Norgren M. Manufacture of Non-Resin Wheat Straw Fibreboards. Industrial Crops and Products, 2009, vol. 29, iss. 2-3, pp. 437–445. DOI: 10.1016/j.indcrop.2008.08.007

32. Heitz M., Capek-Ménard E., Koeberle P.G., Gagné J., Chornet E., Overend R.P., Taylor J.D., Yu E. Fractionation of Populus tremuloides at the Pilot Plant Scale: Optimization of Steam Pretreatment Conditions Using the STAKE II Technology. Bioresource Technology, 1991, vol. 35, iss. 1, pp. 23–32. DOI: 10.1016/0960-8524(91)90078-x

33. Heitz M., Carrasco F., Rubio M., Brown A., Chornet E., Overend R.P. Physico-Chemical Characterization of Lignocellulosic Substrates Pretreated via Autohydrolysis: An Application to Tropical Woods. Biomass, 1987, vol. 13, iss. 4, pp. 255–273. DOI: 10.1016/0144-4565(87)90063-1

34. Muzamal M., Jedvert K., Theliander H., Rasmuson A. Structural Changes in Spruce Wood During Different Steps of Steam Explosion Pretreatment. Holzforschung, 2015, vol. 69, iss. 1, pp. 61–66. DOI: 10.1515/hf-2013-0234

35. Overend R.P., Chornet E. Fractionation of Lignocellulosics by Steam Aqueous Pretreatments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1987, vol. 321, no. 1561, pp. 523–536. DOI: 10.1098/rsta.1987.0029

36. Prosvirnikov D.B., Safin R.G., Akhmetshin I.R., Taimarov M.A., Timerbaev N.F. Mechanization of Continuous Production of Powdered Cellulose Technology. IOP Conference Series: Materials Science and Engineering, 2017, vol. 221, art. 012010. DOI: 10.1088/1757-899X/221/1/012010

37. Prosvirnikov D.B., Safin R.G., Zakirov S.R. Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment. Solid State Phenomena, 2018, vol. 284, pp. 773–778. DOI: 10.4028/www.scientific.net/SSP.284.773

38. Prosvirnikov D.B., Safin R.G., Ziatdinova D.F., Timerbaev N.F., Sadrtdinov A.R. Modeling of Delignification Process of Activated Wood and Equipment for Its Implementation. IOP Conference Series: Materials Science and Engineering, 2017, vol. 221, art. 012009. DOI: 10.1088/1757-899X/221/1/012009

39. Skurydin Yu.G., Skuridina E.M. Physical and Mechanical Characteristics of the Thermal-Wood Composition from Hydrolyzed Birch Wood. IOP Conference Series: Earth and Environmental Science, 2019, vol. 316, art. 012066. DOI: 10.1088/1755-1315/316/1/012066

40.Startsev O.V., Salin B.N., Skuridin Y.G., Utemesov R.M., Nasonov A.D. Physical Properties and Molecular Mobility of New Wood Composite Plastic “Thermobalite”. Wood Science and Technology, 1999, vol. 33, I. 1, pp. 73–83. DOI: 10.1007/s002260050100


PHYSICAL AND MECHANICAL CHARACTERISTICS OF A PINE THERMOWOOD COMPOSITION DURING BAROTHERMAL TREATMENT

Yuri G. Skurydin1, Candidate of Engineering, Assoc. Prof.;
ResearcherID: AAE-1212-2019, ORCID: https://orcid.org/0000-0002-1852-2152
Elena M. Skurydina2, Candidate of Engineering, Assoc. Prof.;
ResearcherID: AAB-4572-2021, ORCID: https://orcid.org/0000-0002-1707-8846
Rushan G. Safin3, Doctor of Engineering, Prof.; ResearcherID: Q-8575-2017, ORCID: https://orcid.org/0000-0002-5790-4532
Almira R. Khabibulina3, Candidate of Engineering, Assoc. Prof.; ResearcherID: AAB-5176-2021, ORCID: https://orcid.org/0000-0002-0762-8816
1Altai State University, prosp. Lenina, 61, Barnaul, 656049, Russian Federation; e-mail: skur@rambler.ru
2Altai State Pedagogical University, ul. Molodezhnaya, 55, Barnaul, 656031, Russian Federation; e-mail: skudem@rambler.ru
3Kazan National Research Technological University, ul. K. Marksa, 68, Kazan, Republic of Tatarstan, 420015, Russian Federation; e-mail: safin@kstu.ru

Abstract. The studies are aimed at forming ideas on the structure and properties of composite materials obtained from pine wood and the processes occurring in the structure of wood tissue. The article presents the data on the influence of the conditions of barothermal treatment of pine wood samples by the method of explosive autohydrolysis on the properties of a thermowood composition. The composite material is obtained by hot pressing. The influence on density,strength and hydrophobic characteristics was studied. A series of samples was made under
different conditions of the explosive autohydrolysis rigidity factor; at a temperature of 200 °C and the process duration from 0.08 to 10 min. All samples of composite material were obtained without the use of additional components. It was found that the increase in the hydrolysis rigidity factor leads to a decrease in the density of hydrolyzed wood from 440 to ~350 kg/m3. There is no fragmentation of wood samples with the selected processing parameters. Hot pressing of hydrolyzed wood obtained under conditions of low or moderate rigidity is accompanied by a linear increase in the density of the thermowood composite material from ~440 to 500 kg/m3. The consequence of a further increase in the rigidity factor is a slowdown in the rate of increase in the density of the composite material. The conditional boundary that determines the achievement of the maximum number of cross-linked intermolecular structures in the composite material corresponds to the rigidity factor of 3000–4500 min. More rigid processing conditions cause intensification of thermal degradation processes. The dependence of hydrophobic characteristics on the rigidity of the barothermal treatment conditions is complex. At the rigidity factor of 1000–3000 min, an extreme point is observed, before which the hydrophobic properties of the material deteriorate. Its water absorption and swelling increase from 50 to 130 % and from 15 to 54 %, respectively. The hydrophobic performance is significantly improved after reaching the extreme point. Water absorption and swelling reduce to ~20 % and ~10 %, respectively. Mild hydrolysis conditions do not result in a material with consistently high hydrophobic properties. The cross-linked structures are not enough to form a strong and water-resistant composition, and as a consequence, the hydrophobic characteristics deteriorate. Increasing the value of the hydrolysis rigidity factor increases the number of active components. Additional intermolecular bonds formed during pressing improve hydrophobic characteristics. The obtained results can be used in the creation of models of processes occurring in the structure of lignocellulose substance during explosive autohydrolysis and in the preparation of composite materials based on it. Optimal parameters of barothermal treatment for obtaining composite materials with specified physical and mechanical characteristics can be determined. Barothermal treatment of solid pine wood by explosive autohydrolysis contributes to the occurrence of chemically active components in the structure of wood tissue. Their number depends on the rigidity of the processing conditions. The properties of the resulting thermowood composition depend on the conditions of explosive autohydrolysis.

For citation: Skurydin Yu.G., Skurydina E.M., Safin R.G., Khabibulina A.R. Physical and Mechanical Characteristics of a Pine Thermowood Composition during Barothermal Treatment. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 2, pp. 143–155. DOI:10.37482/0536-1036-2021-2-143-155

Keywords: wood, pine, explosive autohydrolysis, barothermal treatment, composite material, thermowood composition, water absorption, thickness swelling, density, strength.

Авторы заявляют об отсутствии конфликта интересов
The authors declare that there is no conflict of interest
Поступила 09.12.19 / Received on December 9, 2019