Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: 8(8182) 21-61-18 архив |
С.Е. Арико, С.А. Войнаш, Д.А. Кононович, В.А. Соколова Рубрика: Лесоэксплуатация Скачать статью (pdf, 0.8MB )УДК630*36/.37:630.383(047.31)АннотацияВ последние годы на предприятиях лесного хозяйства и энергетики Республики Беларусь и других стран широко внедряются перспективные фрезерные орудия, предназначенные для измельчения древесины, пней и корней без погружения фрезы в почву (мульчеры) и с погружением (ротоваторы), что позволяет подготовить землю под посадку лесных культур. Они могут агрегатироваться на универсально-пропашных тракторах, погрузчиках, экскаваторах. При этом отсутствуют методики, позволяющие осуществлять обоснованный выбор технологического оборудования под конкретную базовую машину, так как на возникающие силовые и мощностные параметры оказывает влияние значительное количество производственно-технологических и технических факторов. Предложенная методика дает возможность учитывать значительное количество изменяемых величин (приемы работы, скорости выполнения различных операций, параметры рабочего органа, его привода и базового шасси, почвогрунтовые условия и др.) и моделировать процесс взаимодействия фрезерных орудий при различных условиях эксплуатации. Установлено, что наибольшие нагрузки на ротор мульчера приходятся в процессе валки древесно-кустарниковой растительности, что связано с увеличением площади взаимодействия резцов с древесиной до 2 раз в сравнении с измельчением аналогичного лежащего древостоя. Данное значение, в зависимости от диаметра обрабатываемых стволов, может быть снижено на 15–30 %. При этом в случае значительного количества (скопления) древостоя диаметром более 10 см предпочтительны осуществление работ на скорости около 0,2 м/с или предварительная валка данных деревьев. Для снижения динамических нагрузок и лучшей приспособляемости рабочего оборудования к природно-производственным условиям (возможность осуществления работ на скорости от 0 до 5 км/ч) перспективным является применение гидроуменьшителей хода или гидрообъемной трансмиссии. Необходимо учитывать, что установленную для привода фрезерного оборудования мощность двигателя следует увеличить на 10–15 % в связи с потребностями привода различного оборудования, расположенного на базовом шасси. Также в случае комплексного использования древесно-кустарниковой растительности возможно применение мульчеров, осуществляющих сбор биомассы, однако это потребует дополнительных затрат энергии. В связи с этим методика может быть применена при выборе параметров технологического оборудования под имеющееся базовое шасси, решении обратной задачи, а также осуществлении выбора режима эксплуатации фрезерного оборудования в зависимости от природно-производственных условий с возможностью последующего прогнозирования эффективности выполняемых работ.Сведения об авторахС.Е. Арико1, канд. техн. наук, доц.; ResearcherID: AAK-2167-2020, ORCID: https://orcid.org/0000-0001-6812-8842С.А. Войнаш2, инж.; ResearcherID: AAK-2987-2020, ORCID: https://orcid.org/0000-0001-5239-9883 Д.А. Кононович1, аспирант; ResearcherID: AAK-2583-2020, ORCID: https://orcid.org/0000-0001-6947-0674 В.А. Соколова3, канд. техн. наук, доц.; ResearcherID:AAK-6062-2020, ORCID: https://orcid.org/0000-0001-6880-445X 1Белорусский государственный технологический университет, ул. Свердлова, д. 13а, Минск, Республика Беларусь, 220006; e-mail: sergeyariko@mail.ru, denkon_92@mail.ru 2Новосибирский государственный аграрный университет, ул. Добролюбова, д. 160, г. Новосибирск, Россия, 630039; e-mail: sergey_voi@mail.ru 3Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., д. 5, Санкт-Петербург, Россия, 194021; e-mail: sokolova_vika@inbox.ru Ключевые словалесовосстановление, измельчение древесно-кустарниковой растительности, фрезерное орудие, мульчер, базовое шасси, условия эксплуатацииДля цитированияАрико С.Е., Войнаш С.А., Кононович Д.А., Соколова В.А. Мощностные характеристики узлов мульчера при удалении древесно-кустарниковой растительности // Изв. вузов. Лесн. журн. 2021. № 2. С. 130–142. DOI: 10.37482/0536-1036-2021-2-130-142Литература1. Абдразаков Ф.К., Потапов И.Н., Мараев В.Н. Перспективные технологии и средства удаления древесно-кустарниковой растительности // Механизация строительства. 2007. № 4. С. 13–17. [Abdrazakov F.K., Potapov I.N., Marayev V.N. Promising Technologies and Means for Removing Tree and Shrub vegetation. Mekhanizatsiya stroitel’stva [Construction mechanization], 2007, no. 4, pp. 13–17]. 2. Арико С.Е., Мохов С.П., Симанович В.А., Дудко Е.М. Применение фрезерного оборудования в лесном комплексе Республики Беларусь // Материалы Междунар. науч.-техн. конф. «Материалы, оборудование и ресурсосберегающие технологии». Могилев: БРУ, 2017. С. 197–198. Режим доступа: http://e.biblio.bru.by/handle/1212121212/4759 (дата обращения: 30.03.20). [Ariko S.Ye., Mokhov S.P., Simanovich V.A., Dudko Ye.M. The Use of Milling Equipment in the Forest Complex of the Republic of Belarus. Proceedings of the International Scientific and Technical Conference “Materials, Equipment and Resource-Saving Technologies. Mogilev, BRU Publ., 2017, pp. 197–198]. 3. Арико С.Е., Симанович В.А., Мохов С.П., Голякевич С.А., Кононович Д.А., Дудко Е.М., Путрич А.Ю. Лесохозяйственная машина. Патент Республики Беларусь № 11798, 2018. [Ariko S.Ye., Simanovich V.A., Mokhov S.P., Golyakevich S.A., Kononovich D.A., Dudko Ye.M, Putrich A.Yu. Forestry Machine. Patent BY, no. 11798, 2018]. 4. Асмоловский М.К., Жуков А.В., Лой В.Н. Механизация лесного и садово-паркового хозяйства. Минск: БГТУ, 2004, 506 с. [Asmolovskiy M.K., Zhukov A.V., Loy V.N. Mechanization of Forestry and Landscape Gardening. Minsk, BGTU P, 2004. 506 p.]. 5. Войнаш С.А., Войнаш А.С. Система унифицированных машин на базе гусеничного форвардера ЛЗ-5 // Строительные и дорожные машины. 2013. № 12. С. 6–9. [Voinash S.A., Voinash A.S. The System of Unified Vehicles Based on the Crawler Forwarder LZ-5. Stroitel’nyye i dorozhnyye mashiny [Construction and Road Building Machinery], 2013, no. 12, pp. 6–9]. 6. Войнаш С.А., Кононович Д.А., Арико С.Е., Соколова В.А. Теоретические основы оценки эффективности применения машин для транспортировки лесосечных отходов // Сб. ст. Всерос. науч.-практ. конф. «Лесоэксплуатация и комплексное использование древесины». Красноярск: СибГУ им. М.Ф. Решетнева, 2020. С. 48–55. [Voinash S.A., Kononovich D.A., Ariko S.E., Sokolova V.A. Theoretical Bases of Evaluating the Efficiency of Using Machines for the Transportation of Logging Wastes. Collection of Academic Papers of the All-Russian Scientific and Practical Conference “Forest Exploitation and Integrated Use of Wood”. Krasnoyarsk, SibSAU Publ., 2020, pp. 48–55]. 7. Глебов И.Т. Обработка древесины методом фрезерования. Екатеринбург: Урал. гос. лесотехн. ун-т, 2007, 192 с. Режим доступа: https://elar.usfeu.ru/bitstream/123456789/3154/1/Glebov_Odrabotka_drevesiny_2007.pdf (дата обращения: 30.03.20). [Glebov I.T. Wood Processing by Milling Method. Yekaterinburg, USFEU Publ., 2007. 192 p.]. 8. Ивашнев М.В., Шегельман И.Р. Технология защиты линий электропередачи от деревьев и кустарников с использованием кустореза с активным рабочим органом // Глобальный научный потенциал. 2012. № 4(13). С. 105–107. [Ivashnev M.V., Shegelman I.R. Technology for Protection of Power Transmissions from Trees and Bushes Using Brush Cutter with Active Working Body. Global’nyy nauchnyy potentsial [Global Scientific Potential], 2012, no. 4(13), pp. 105–107]. 9. Наумов Е.С., Парфенов А.П., Шарипов В.М., Эглит И.М. Рабочее оборудование тракторов. М.: МАМИ, 1999, 89 с. [Naumov E.S, Parfenov A.P., Sharipov V.M, Eglit I.M. Working Equipment of Tractors. Moscow, MAMI Publ., 1999. 89 p.]. 10. Орловский С.Н., Карнаухов А.И. Обоснование технологии применения и компоновки агрегата для понижения пней // Изв. вузов. Лесн. журн. 2017. № 3. С. 123–131. [Orlovskiy S.N., Karnaukhov A.I. Application and Configuration Technology of the Stump Lowering Device. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 3, pp. 123–131]. DOI: 10.17238/issn0536-1036.2017.3.123, URL: http://lesnoizhurnal.ru/upload/iblock/111/2_orlovskiy.pdf 11. Пешков А.А., Гордеев М.П., Сыроватский С.О. Проектирование 3D модели мульчера в системе CAD // Сб. материалов Всерос. науч.-практ. конф. студентов, аспирантов и молодых ученых «Молодые ученые в решении актуальных проблем науки». Красноярск, СибГУ им. М.Ф. Решетнева. 2017. С. 496–498. Режим доступа: https://www.elibrary.ru/download/elibrary_36581367_12326028.pdf (дата обращения: 30.03.20). [Peshkov A.A., Gordeev M.P., Syrovatski S.O. The Construction of 3D Models Mulcher in the CAD System. Proceedings of the All-Russian Scientific and Practical Conference of Students, Postgraduate Students and Young Scientists “Young Scientists in Solving Urgent Problems of Science”. Krasnoyarsk, SibSAU Publ., 2017, pp. 496–498]. 12. Тикачев В. Мульчеры и измельчители пней // ЛесПромИнформ. 2010. № 4(70) С. 76–81. Режим доступа: https://lesprominform.ru/jarticles.html?id=1329 (дата обращения: 30.03.20). [Tikachev V. Mulchers and Stump Grinders. LesPromInform, 2010, no. 4(70), pp. 76–81]. 13. Alekseeva S.V., Sokolova V.A., Markov V.A. Mathematical Modeling of One Type of Three-Link Robot Manipulator. IOP Conference Series: Earth and Environmental Science, 2020, vol. 421, iss. 4, art. 042005. DOI: 10.1088/1755-1315/421/4/042005 14. Arpit K., Satish M., Mukesh J. Performance Evaluation of Tractor PTO Operated Rotary Mulcher. Journal of Pharmacognosy and Phytochemistry, 2018, vol. 7, iss. 6, pp. 1113–1115. DOI: 10.22271/phyto 15. Čedík J., Pexa M., Pražan R., Kubín K., Vondřička J. Mulcher Energy Intensity Measurement in Dependence on Performance. Agronomy Research, 2015, vol. 13, no. 1, pp. 46–52. 16. Khafizov C.A., Khafizov R.N., Nurmiev A.A., Galiev I.G. Justification of the Optimal Annual Load on the Tractor Providing for Its Parameters Stress on the Formed Crop. BIO Web of Conferences, 2020, vol. 17, art. 00022. DOI: 10.1051/bioconf/20201700022 17. Kumhála F., Chyba J., Pexa M., Čedík J. Measurement of Mulcher Power Input in Relation to Yield. Agronomy Research, 2016, vol. 14, no. 4, pp. 1380–1385. 18. Ľuptáčiková V., Ťavodová M. Methods for Increasing the Material Resistance of the Mulching Tool Body Against Its Deformation in Operation. Technological Engineering, 2017, vol. XIV, no. 2/2017, pp. 17–20. DOI: 10.1515/teen-2017-0015 19. Savchenkova V.A., Korshunov N.A., Perminov A.V., Voinash S.A. The Problem of Fire Fighting during the Hours of Darkness. IOP Conference Series: Earth and Environmental Science, 2020, vol. 421, art. 062002. DOI: 10.1088/1755-1315/421/6/062002 20. Ťavodová M., Kalincová D., Kotus M., Pavlík Ľ. The Possibility of Increasing the Wearing Resistance of Mulcher Tools. Acta Technologica Agriculturae, 2018, vol. 21, iss. 2, pp. 87–93. DOI: 10.2478/ata-2018-0016 21. Verma A., Singh Ar., Singh Am., Sidhu S.G., Dixit An. Performance Evaluation of Tractor Operated Paddy Straw Mulcher. Journal of Krishi Vigyan, 2016, vol. 4, iss. 2, pp. 70–75. DOI: 10.5958/2349-4433.2016.00016.7 22. Zimelis А., Sisenis L., Sarmulis Z., Ariko S. Technology and Energy Balance in Stump Harvesting with MCR500. Engineering for Rural Development, 2018, pp. 1395–1400. DOI: 10.22616/ERDEV2018.17.N162 Ссылка на английскую версию:Power Characteristics of Mulcher Joints When Removing Tree and Shrub Vegetation
POWER CHARACTERISTICS OF MULCHER JOINTS WHEN REMOVING TREE AND SHRUB VEGETATION Sergey Ye. Ariko1, Candidate of Engineering, Assoc. Prof.; ResearcherID: AAK-2167-2020, ORCID: https://orcid.org/0000-0001-6812-8842 Sergey A. Voinash2, Engineer; ResearcherID: AAK-2987-2020, ORCID: https://orcid.org/0000-0001-5239-9883 Denis A. Kononovich1, Postgraduate Student; ResearcherID: AAK-2583-2020, ORCID: https://orcid.org/0000-0001-6947-0674 Viktoria A. Sokolova3, Candidate of Engineering, Assoc. Prof.; ResearcherID: AAK-6062-2020, ORCID: https://orcid.org/0000-0001-6880-445X 1Belarusian State Technological University, ul. Sverdlova, 13a, Minsk, 220006, Republic of Belarus; e-mail: sergeyariko@mail.ru, denkon_92@mail.ru 2Novosibirsk State Agrarian University, ul. Dobrolyubova, 160, Novosibirsk, 630039, Russian Federation; e-mail: sergey_voi@mail.ru 3St. Petersburg State Forest Engineering University named after S.M. Kirov, Institutskiy per., 5, Saint Petersburg, 194021, Russian Federation; e-mail: sokolova_vika@inbox.ru Abstract. In recent years, the enterprises of forestry and the Ministry of Energy of the Republic of Belarus and other countries widely implemented advanced milling tools designed to chop wood, stumps and roots without immersing the cutter in the soil (mulchers) and with immersion (rotovators), which allows you to prepare the ground for planting forest crops. They can be mounted on multi-purpose tractors, loaders and excavators. At the same time, there are no methods that allow carrying out a reasonable choice of technological equipment for a particular basic machine, since a significant number of production, technological and technical factors have an impact on the emerging power and capacity parameters. The proposed method allows taking into account a significant number of variable values (working methods, speeds of various operations, parameters of the working body, its drive and base chassis, soil conditions, etc.) and simulate the interaction of milling tools under various operating conditions. It was found that the greatest loads on the mulcher rotor occur during the felling of tree and shrub vegetation, which is associated with an increase in the area of interaction between the cutters and the wood up to 2 times compared with the chopping of similar lying stands. This value can be reduced by 15–30 % depending on the diameter of the trunks being processed. In the case of a significant amount (cluster) of forest stands with a diameter of more than 10 cm, it is preferable to carry out work at a speed of about 0.2 m/s or advanced felling of these trees. The use of hydraulic travel (speed) reducers or hydrostatic transmission is promising in order to reduce dynamic loads and get better adaptability of the working equipment to natural-production conditions (the ability to work at a speed from 0 to 5 km/h). It should be noted that the installed required engine power for the milling equipment drive should be increased by 10–15 % due to the needs of the drive of various equipment located on the base chassis. Also, in the case of the integrated use of tree and shrub vegetation, it is possible to use mulchers that collect biomass; however, this will require additional energy costs. In this regard, the method can be applied when choosing the parameters of technological equipment for the existing base chassis, to solve the inverse problem, and also to select the operating mode of the milling equipment depending on the natural and production conditions with the possibility of subsequent prediction of the effectiveness of the work performed. For citation: Ariko S.Ye., Voinash S.A., Kononovich D.A., Sokolova V.A. Power Characteristics of Mulcher Joints When Removing Tree and Shrub Vegetation. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 2, pp. 130–142. DOI: 10.37482/0536-1036-2021-2-130-142 Keywords: reforestation, chopping of tree and shrub vegetation, milling tool, mulcher, base chassis, exploitation conditions.
Авторы заявляют об отсутствии конфликта интересов |