Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: 8(8182) 21-61-18 архив |
Р.А. Смит, Е.Ю. Демьянцева, О.С. Андранович, А.П. Филиппов Рубрика: Химическая переработка древесины Скачать статью (pdf, 0.5MB )УДК676.085.2;544.77.023.523DOI:10.37482/0536-1036-2021-1-180-191АннотацияНеобходимость совершенствования существующей технологии обессмоливания целлюлозы (снижения расхода использующихся при этом проверхностно-активных веществ и уменьшения экологической нагрузки) – обусловила сочетание существующих методов удаления смолы с ферментативной обработкой. Основой механизма обессмоливания целлюлозы амфифильными соединениями является процесс солюбилизации смолистых веществ, поэтому установление закономерностей данного процесса и его регулирование предопределяют успешность реализации выбранной технологии. С использованием спектрофотометрии, рН-метрии и метода динамического светорассеяния исследованы особенности солюбилизации триолеина и канифоли в системах на основе индивидуальных неионогенных поверхностно-активных веществ, фермента липазы, а также их синергетических смесей с определением солюбилизационных емкостей мицелл и возможного механизма встраивания в них солюбилизата. Установлено, что синтамид-5 обладает невысокой обессмоливающей способностью, несмотря на высокую солюбилизационную емкость его мицелл и получение агрегатов с гидродинамическим радиусом до 98 нм после диффузии канифоли в них. Вероятно, для успешного обессмоливания целлюлозных полуфабрикатов более предпочтительны компактные мицеллярные структуры с развитой поверхностью, которые реализуются в смешанных системах амфифильных соединений, в том числе с присутствием в них синтамида-5. Введение липазы приводит к увеличению солюбилизационной емкости смешанных агрегатов и возрастанию интенсивности встраивания молекул солюбилизата. При этом в зависимости от природы амфифильного соединения имеет место различный механизм встраивания солюбилизата в мицеллы. Определение размеров ассоциатов в смешанных системах показало отсутствие денатурации фермента, что прогнозирует успешное применение таких кооперативных систем для обессмоливания волокнистых полуфабрикатов. Установлено, что солюбилизирующая способность изучаемых систем на объектах, моделирующих смолу, коррелируется с их обессмоливающей способностью относительно различных волокнистых полуфабрикатов.Благодарность: За содействие в проведении исследования ферментного препарата методом электрофореза в полиакриламидном геле авторы благодарят ведущего инженера лаборатории № 5 ИВС РАН В.В. Захарова. Сведения об авторахР.А. Смит1, аспирант; ResearcherID: O-2661-2019,ORCID: https://orcid.org/0000-0002-9665-4636 Е.Ю. Демьянцева1, канд. хим. наук, доц.; ResearcherID: P-5165-2019, ORCID: https://orcid.org/0000-0001-9570-1827 О.С. Андранович1, аспирант; ResearcherID: P-5570-2019, ORCID: https://orcid.org/0000-0002-7947-7068 А.П. Филиппов1,2, д-р физ.-мат. наук; ResearcherID: A-9157-2013, ORCID: https://orcid.org/0000-0002-8729-6275 1Санкт-Петербургский государственный университет промышленных технологий и дизайна, ул. Ивана Черных, д. 4, Санкт-Петербург, Россия, 198095; e-mail: zz1234567@yandex.ru, demyantseva@mail.ru, ilonichka3377@mail.ru 2Институт высокомолекулярных соединений РАН, Большой просп. В.О., д. 31, Санкт-Петербург, Россия, 199004; e-mail: afil@imc.macro.ru Ключевые словасолюбилизация, обессмоливание целлюлозы, липаза, поверхностно- активные веществаДля цитированияСмит Р.А., Демьянцева Е.Ю., Андранович О.С., Филиппов А.П. Особенности солюбилизирующего действия амфифильных соединений при обессмоливании целлюлозы // Изв. вузов. Лесн. журн. 2021. № 1 . С. 180–191. DOI: 10.37482/0536-1036-2021-1-180-191Литература1. Акимова Г.С., Курзин А.В., Павлова О.С., Евдокимов А.Н. Химия и технология компонентов сульфатного мыла. СПб.: СПбГТУРП, 2008. 104 с. [Akimova G.S., Kurzin A.V., Pavlova O.S., Evdokimov A.N. Chemistry and Technology of Sulphate Soap Components. Saint Petersburg, HSTE Publ., 2008. 104 p.].2. Беленова А.С. Исследование закономерностей гидролиза триглицеридов свободной и иммобилизованной липазой: автореф. дис. ... канд. биол. наук. Воронеж, 2011. 24 с. [Belenova A.S. Study of Triglyceride Hydrolysis Patterns by Free and Immobilized Lipase: Cand. Biol. Sci. Diss. Abs. Voronezh, 2011. 24 p.]. 3. Болотова К.С., Новожилов Е.В. Применение ферментных технологий для повышения экологической безопасности целлюлозно-бумажного производства // Химия растит. сырья. 2015. № 3. С. 5–23. [Bolotova K.S., Novozhilov E.V. Enzymes Application for Improving Ecological Safety of Pulp and Paper Industry. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2015, no. 3, pp. 5–23]. DOI: 10.14258/jcprm.201503575 4. Волков В.А., Талмуд С.Л. Исследование солюбилизации канифоли в водных растворах некоторых поверхностно-активных веществ // Коллоид. журн. 1966. Т. 28, № 3. С. 343–349. [Volkov V.A., Talmud S.L. Study of Rosin Solubilization in Aqueous Solutions of Some Surfactants. Kolloidnyj Zhurnal [Colloid Journal], 1966, vol. 28, no. 3, pp. 343–349]. 5. Горохова И.В. Изучение каталитических свойств липаз, иммобилизованных в гидрофобных средах: дис. ... канд. хим. наук. М., 2003. 134 с. [Gorokhova I.V. Study of the Catalytic Properties of Lipases Immobilized in Hydrophobic Media: Cand. Chem. Sci. Diss. Moscow, 2003. 134 p.]. 6. ГОСТ 6841–77. Целлюлоза. Метод определения смол и жиров. Дата введ. 1979-01-01. М.: Изд-во стандартов, 1998. 6 с. [State Standard. GOST 6841–77. Cellulose. Method for Determination of Pitch and Fat. Moscow, Izdatel’stvo standartov, 1998. 6 p.]. 7. ГОСТ 19113–84. Канифоль сосновая. Технические условия. Дата введ. 1986-01-01. М.: Изд-во стандартов, 1999. 5 с. [State Standard. GOST 19113–84. Pine Rosin. Specifications. Moscow, Izdatel’stvo standartov, 1999. 5 p.]. 8. Емельянова М.В., Чухчин Д.Г., Новожилов Е.В. Перспективы использования липазы в целлюлозно-бумажном производстве // Изв. вузов. Лесн. журн. 2007. № 1. С. 111–119. [Emeljanova M.V., Chuhchin D.G., Nоvozhilov E.V. Prospects of Using Lipase in Pulp-and-Paper Production. Lesnoy Zhurnal [Russian Forestry Journal], 2007, no. 1, pp. 111–119]. URL: http://lesnoizhurnal.ru/upload/iblock/38f/38f6a443ad5e3e8c17862ed53e2bb646.pdf 9. Задымова Н.М. Жидкофазные дисперсные системы как основа микрогетерогенных полимерных матриц для трансдермальной доставки лекарств: дис. ... д-ра хим. наук. М., 2014. 273 с. [Zadymova N.M. Liquid-Phase Disperse Systems as a Basis of Microheterogeneous Polymeric Matrices for Transdermal Drug Delivery: Dr. Chem. Sci. Diss. Moscow, 2014. 273 p.] URL: http://www.chem.msu.ru/rus/theses/2014-01-21-zadymova/fulltext.pdf 10. Новожилов Е.В. Пошина Д.Н. Биотехнологии в производстве целлюлозы для химической переработки (обзор) // Химия растит. сырья. 2011. № 3. С. 15–32. [Novozhilov E.V., Poshina D.N. Biotechnology in Dissolving Pulp Production. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2011, no. 3, pp. 15–32]. 11. Печурина Т.Б., Миловидова Л.А., Комарова Г.В., Комаров В.И. Влияние добавок диспергантов на изменение состояния смолы и содержание экстрактивных веществ в лиственной сульфатной целлюлозе // Изв. вузов. Лесн. журн. 2003. № 2-3. С. 68–75. [Pechurina T.B., Milovidova L.A., Komarova G.V., Komarov V.I. Influence of Dispergant Additives on Resin State Changing and Extractives Content in Sulphate Softwood Pulp. Lesnoy Zhurnal [Russian Forestry Journal], 2003, no. 2-3, pp. 68–75]. URL: http://lesnoizhurnal.ru/upload/iblock/8e6/8e6ebe5a410ec2ec1c64f589cda92dce.pdf 12. Русанов А.И., Щёкин А.К. Мицеллообразование в растворах поверхностно-активных веществ: моногр. СПб.: Лань, 2016. 612 с. [Rusanov A.I., Shchekin A.K. Micellization in Solutions of Surfactants. Saint Petersburg, Lan’ Publ., 2016. 612 p.]. 13. Смит Р.А., Демьянцева Е.Ю., Андранович О.С. Влияние липазы на мицеллообразующую и солюбилизирующую способность неионогенных поверхностно-активных веществ // Изв. вузов. Химия и хим. технология. 2018. Т. 61, вып. 6. С. 54–60. [Smith R.A., Demyantseva E.Yu., Andranovich O.S. Impact of Lipase on Micelle Formation and Solubilization Abilities of Non-Ionic Surfactants. Izvestiya vysshikh uchebnykh zavedeniy. Seriya: khimiya i khimicheskaya tekhnologiya [Russian Journal of Chemistry and Chemical Technology], 2018, vol. 61, iss. 6, pp. 54–60]. DOI: 10.6060/tcct.20186106.5696 14. Смит Р.А., Демьянцева Е.Ю., Андранович О.С. Анализ состояния смолы при обессмоливании сульфатной лиственной целлюлозы // Изв. вузов. Лесн. журн. 2019. № 4. С. 168–178. [Smith R.A., Demyantseva E.Yu., Andranovich O.S. Analysis of the Resin Forms in the Process of the Short Fiber Sulphate Cellulose Deresination. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 4, pp. 168–178]. DOI: 10.17238/issn0536-1036.2019.4.168, URL: http://lesnoizhurnal.ru/upload/iblock/a44/168_178.pdf 15. Хакимова Ф.Х., Ковтун Т.Н., Хакимов Р.Р. Обессмоливание целлюлозы поверхностно-активными веществами на стадии бисульфитной варки // Изв. вузов. Лесн. журн. 2008. № 5. С. 108–113. [Khakimova F.Kh., Kovtun T.N., Khakimov R.R. Pulp Deresinationby Surfactants at Bisulfite Pulping Stage. Lesnoy Zhurnal [Russian Forestry Journal], 2008, no. 5, pp. 108–113]. URL: http://lesnoizhurnal.ru/upload/iblock/f63/f63241d806cb31f- 2b65c34d595a942a7.pdf 16. Delorme V., Dhouib R., Canaan S., Fotiadu F., Carrière F., Cavalier J.-F. Effects of Surfactants on Lipase Structure, Activity, and Inhibition. Pharmaceutical Research, 2011, vol. 28, pp. 1831–1842. DOI: 10.1007/s11095-010-0362-9 17. Holmberg K. Interactions between Surfactants and Hydrolytic Enzymes. Colloids and Surfaces B: Biointerfaces, 2018, vol. 168, pp. 169–177. DOI: 10.1016/j.colsurfb.2017.12.002 18. Hubbe M.A., Rojas O.J., Venditti R.A. Control of Tacky Deposits on Paper Machines – A Review. Nordic Pulp & Paper Research Journal, 2006, vol. 21, iss. 2, pp. 154–171. DOI: 10.3183/npprj-2006-21-02-p154-171 19. Jelińska A., Zagożdżon A., Górecki M., Wisniewska A., Frelek J., Holyst R. Denaturation of Proteins by Surfactants Studied by the Taylor Dispersion Analysis. PLoS ONE, 2017, vol. 12(4), art. e0175838. DOI: 10.1371/journal.pone.0175838 20. Kamil M., Siddiqui H. Experimental Study of Surface and Solution Properties of Gemini-Conventional Surfactant Mixtures on Solubilization of Polycyclic Aromatic Hydrocarbon. Modeling and Numerical Simulation of Material Science, 2013, vol. 3, no. 4B, pp. 17–25. DOI: 10.4236/mnsms.2013.34B004 21. Kratochvíl P. Classical Light Scattering from Polymer Solution. Amsterdam, Elsevier, 1987. 334 p. 22. Magalhães S.S., Alves L., Sebastião M., Medronho B., Almeida Z.L., Faria T.Q., Brito R.M.M., Moreno M.J., Antunes F.E. Effect of Ethyleneoxide Groups of Anionic Surfactants on Lipase Activity. Biotechnology Process, 2016, vol. 32, iss. 5, pp. 1276–1282. DOI: 10.1002/btpr.2310 23. McBain M.E.L., Hutchinson E. Solubilization and Related Phenomena. New York, Academic Press, 1955. 257 p. 24. Mittal K.L. Micellization, Solubilization, and Microemulsions. Vol. 2. New York, Plenum Press, 1977. 460 p. DOI: 10.1007/978-1-4613-4157-4 25. Otzen D. Protein–Surfactant Interactions: A Tale of Many States. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 2011, vol. 1814, iss. 5, pp. 562–591. DOI: 10.1016/j.bbapap.2011.03.003 26. Reis P., Malmsten M., Nydén M., Folmer B., Holmberg K. Interactions between Lipases and Amphiphiles at Interfaces. Journal of Surfactants and Detergents, 2019, vol. 22, iss. 5, pp. 1047–1058. DOI:10.1002/jsde.12254 27. Schärtl W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Berlin, Springer, 2007. 191 p. DOI: 10.1007/978-3-540-71951-9 Ссылка на английскую версию:Features of Solubilizing Effect of Amphiphilic Compounds during Pulp Deresination
FEATURES OF SOLUBILIZING EFFECT OF AMPHIPHILIC COMPOUNDS DURING PULP DERESINATION Regina A. Smit1, Postgraduate Student; ResearcherID: O-2661-2019, ORCID: https://orcid.org/0000-0002-9665-4636 Elena Yu. Demiantseva1, Candidate of Chemistry, Assoc. Prof.; ResearcherID:P-5165-2019, ORCID: https://orcid.org/0000-0001-9570-1827 Olga S. Andranovich1, Postgraduate Student; ResearcherID: P-5570-2019, ORCID: https://orcid.org/0000-0002-7947-7068 Alexander P. Filippov1,2, Doctor of Physics and Mathematics; ResearcherID: A-9157-2013, ORCID: https://orcid.org/0000-0002-8729-6275 1Saint-Petersburg State University of Industrial Technologies and Design, ul. Ivana Chernykh, 4, Saint Petersburg, 198095, Russian Federation; e-mail: zz1234567@yandex.ru, demyantseva@mail.ru, ilonichka3377@mail.ru 2Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bol’shoy prospect Vasil’yevskogo ostrova, 31, Saint Petersburg, 199004, Russian Federation; e-mail: afil@imc.macro.ru Abstract. The necessity to improve the existing technology of pulp deresination, in particular, to reduce the surfactants consumption and decrease the environmental load, led to a combination of existing methods of resin removal with the use of enzymatic treatment. The basis of the pulp deresination mechanism by amphiphilic compounds is the solubilization of resinous substances. Thus, the establishment of the patterns of this process and its control predetermines the success of implementation of the selected technology. The features of solubilization of triolein and rosin in the lipase-based systems of individual nonionic surfactants, the enzyme, as well as their synergistic mixtures with the determination of solubilization capacities of micelles and the possible mechanism of solubilizate incorporation into them were studied using spectrophotometry, pH measurement and dynamic light scattering. It was found that synthamide-5 has a low deresination capability in spite of the high solubilization capacity of its micelles and the production of aggregates with a hydrodynamic radius up to 98 nm after diffusion of rosin into them. It is likely that compact micellar structures with a developed surface, which are implemented in mixed systems of amphiphilic compounds, including the presence of synthamide-5 in them, are more preferable for successful deresination of pulp semi-finished products. The addition of lipase leads to an increased solubilization capacity of mixed aggregates and an increase in the intensity of solubilizate molecules incorporation. Thus, depending on the nature of the amphiphilic compound, there is a different mechanism for solubilizate incorporation into micelles. Determination of the size of associates in mixed systems showed the absence of enzyme denaturation, which predicts the successful application of such cooperative systems for deresination of fiber semi-finished products. It is found that the solubilizing capability of the studied systems on resin modeling objects correlates with their deresination capability with respect to different fiber semi-finished products. For citation: Smit R.A., Demiantseva E.Yu., Andranovich O.S., Filippov A.P. Features of Solubilizing Effect of Amphiphilic Compounds during Pulp Deresination. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 1, pp. 180–191. DOI: 10.37482/0536-1036-2021-1-180-191 Acknowledgements: The authors are grateful to V.V. Zakharov, leading engineer of Laboratory No. 5 of the Institute of Macromolecular Compounds of the Russian Academy of Sciences (IMC RAS), for his assistance in the study of the enzyme preparation by electrophoresis in polyacrylamide gel. Keywords: solubilization, pulp deresination, lipase, surfactants.
Авторы заявляют об отсутствии конфликта интересов |