Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Пигментный состав Sphagnum fuscum заболоченных территорий в условиях техногенного воздействия

Версия для печати

С.Б. Селянина, В.Г. Татаринцева, И.Н. Зубов, Н.А. Кутакова, Т.И. Пономарева

Рубрика: Лесное хозяйство

Скачать статью (pdf, 0.6MB )

УДК

631.445.12(470.11)

DOI:

10.37482/0536-1036-2020-6-120-131

Аннотация

Среди заболоченных территорий материковой части Севера России преобладают выпуклые сфагновые олиготрофные болота. Изучение реакции мохового покрова на рост техногенной нагрузки позволяет выявить смещение экологического равновесия в болотных экосистемах. Цель исследования состоит в выявлении изменений пигментного аппарата мохового покрова при осушении, дорожном строительстве и добыче полезных ископаемых на примере заболоченных территорий Архангельской области. В качестве основного объекта для изучения пигментного состава фотосинтезирующего аппарата использовали Sphagnum fuscum (Schimp.) H. Klinggr. При сравнении пигментов мха S. fuscum на ненарушенном Иласском болотном массиве и мелиорированном болотном массиве «Овечье» установлено изменение компонентного состава пигментов при осушении болот: содержание каротиноидов снижается, хлорофилла а – увеличивается. Влияние транспортной нагрузки исследовали на открытом заболоченном участке в Мезенском р-не, где отсутствует древесно-кустарниковый ярус. В непосредственной близости от дороги (34 м) наблюдается смена доминирующих видов в мохово-лишайниковом ярусе болота – проективное покрытие сфагновых мхов снижается до уровня менее 10 %, в доминанты выходят бриевые мхи. По мере удаленности от грунтовых автомагистралей содержание всех анализируемых пигментов в образцах мха увеличивается, особенно суммы хлорофиллов (>5 раз при удалении на 100 м и более). В качестве примера техногенного воздействия добывающего предприятия использованы терриконы отработанных пород Ломоносовского ГОК ПАО «Севералмаз», с которых происходит эоловый перенос пылевых частиц породы, содержащей сапонит. Вблизи источника загрязнения содержание суммы пигментов мха заметно ниже, чем на участке, защищенном лесополосой. В составе пигментного комплекса обнаружено снижение доли хлорофиллов а и b при некотором увеличении содержания каротиноидов. Изменения обусловлены переносом сапонита – глинистого минерала, активно поглощающего воду. Повышенное увлажнение обеспечивает благоприятные условия вегетации мхов, что смягчает негативное влияние поллютантов на пигментный аппарат растений. Установлено, что изменение состава пигментов отражает адаптацию растений в экосистемах к неблагоприятным воздействиям и антропогенному прессингу.
Финансирование: Исследование выполнено при финансовой поддержке Минобрнауки России в рамках темы № АААА-А18-118012390224-1 и РФФИ в рамках научных проектов № 18-05-60151 (Арктика) и № 18-05-70087 (Ресурсы Арктики).

Сведения об авторах

С.Б. Селянина1, канд. техн. наук, вед. науч. сотр.; ResearcherID: AAG-4781-2019, ORCID: https://orcid.org/0000-0003-0829-7518
В.Г. Татаринцева1, аспирант, мл. науч. сотр.; ResearcherID: AAH-8581-2019, ORCID: https://orcid.org/0000-0001-6499-9202
И.Н. Зубов1, канд. хим. наук, ст. науч. сотр.; ResearcherID: G-5351-2011, ORCID: https://orcid.org/0000-0003-3037-2449
Н.А. Кутакова2, канд. техн. наук, доц.; Researcher ID: T-1150-2019, ORCID: https://orcid.org/0000-0001-8195-2115
Т.И. Пономарева1, мл. науч. сотр.; ResearcherID: AAG-4731-2019, ORCID: https://orcid.org/0000-0001-7981-8072
1Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН, наб. Северной Двины, д. 23, г. Архангельск, Россия, 163000; e-mail: gumin@fciarctic.ru
2Северный (Арктический) федеральный университет им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002; e-mail: n.kutakova@narfu.ru

Ключевые слова

хлорофилл, каротиноиды, Sphagnum fuscum, освоение заболоченных северных территорий

Для цитирования

Селянина С.Б., Татаринцева В.Г., Зубов И.Н., Кутакова Н.А., Пономарева Т.И. Пигментный состав Sphagnum fuscum заболоченных территорий в условиях техногенного воздействия // Изв. вузов. Лесн. журн. 2020. № 6. С. 120–131. DOI: 10.37482/0536-1036-2020-6-120-131

Литература

1. Зарубина Л.В., Коновалов В.Н. Особенности сезонной динамики пигментов в листьях растений сосняка кустарничково-сфагнового // Изв. вузов. Лесн. журн. 2009. № 4. C. 24–32. [Zarubina L.V., Konovalov V.N. Seasonal Dynamics’ Peculiarities of Leaves’ Pigments in Fruticulose-sphagnous Pine Stands. Lesnoy Zhurnal [Russian Forestry Journal], 2009, no. 4, pp. 24–32]. URL: http://lesnoizhurnal.ru/upload/iblock/02f/ 02f40dbdfd312a4d7c8cdfd4c18706dc.pdf
2. Кузнецов О.Л., Юрковская Т.К. Болотные экосистемы бассейна Белого моря. Геология морей и океанов: материалы XVIII междунар. науч. конф. (школы) по морской геологии. Т. III. М.: ГЕОС, 2009. С. 190–194. [Kuznetsov O.L., Yurkovskaya T.K. White Sea Basin Wetlands. Geology of the Seas and Oceans: Proceedings of the 18th International and Scientific Conference (School) in Marine Geology. Vol. 3. Moscow, GEOS Publ., 2009, pp. 190–194].
3. Об экспертном и общественном обсуждении Стратегии развития Арктической зоны РФ до 2035 года. Режим доступа: http://goarctic.ru/news/ob-ekspertnom-iobshchestvennom-obsuzhdenii-strategii-razvitiya-arkticheskoy-... (дата обращения: 19.11.19). [On Expert and Public Discussion of the Strategy for the Development of the Arctic Zone of the Russian Federation until 2035].
4. Починок Х.Н. Методы биохимического анализа растений. Киев: Наук. думка, 1976. 336 с. [Pochinok Kh.N. Methods for Biochemical Analysis of Plants. Kiev, Naukova dumka Publ., 1976. 336 p.].
5. Растения в условиях химического загрязнения окружающей среды // Лес и экология. 2012. Режим доступа: http://les-pitomnik.ru/vliyanie-zagryaznenij-na-rasteniya/ (дата обращения: 29.03.13). [Plants under Chemical Pollution. Forest and Ecology. 2012].
6. Роль Арктики в развитии России будет возрастать // М-во Российской Федерации по развитию Дальнего Востока и Арктики. Режим доступа: https://minvr.gov.ru/press-center/news/23697/ (дата обращения: 29.10.19). [The Role of the Arctic in the Development of Russia will Increase. Ministry for the Development of the Russian Far East and Arctic].
7. Росреестр. Федеральная служба государственной регистрации, кадастра и картографии. Режим доступа: https://rosreestr.ru/site/eservices/ (дата обращения: 09.12.19). [Rosreestr. Federal Service of State Registration, Cadastre and Cartography].
8. Серебренникова О.В., Стрельникова Е.Б., Русских И.В. Особенности состава липидов сфагновых и бриевых мхов из различных природно-климатических зон //  Химия растит. сырья. 2019. № 3. C. 225–234. [Serebrennikova O.V., Strel’nikova E.B., Russkikh I.V. Features of Lipid Composition of Sphagnum and True Mosses from Various Natural Climatic Zones. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw materials], 2019, no. 3, pp. 225–234]. DOI: 10.14258/jcprm.2019034558
9. Серебренникова О.В., Стрельникова Е.Б., Дучко М.А., Аверина Н.Г., Козел Н.В. Оценка функционального состояния болотных экосистем Беларуси и Западной Сибири на основе анализа состава торфяных битумов // Химия в интересах устойчивого развития. 2015. № 4. С. 367–377. [Serebrennikova O.V., Strelnikova E.B., Duchko M.A., Averina N.G., Kozel N.V. Evaluation of the Functional State of Marsh Ecosystems in Belarus and in West Siberia on the Basis of Analysis of Peat Bitumen Composition. Khimiya v interesakh ustoychivogo razvitiya [Chemistry for Sustainable Development], 2015, no. 4, pp. 367–377]. DOI: 10.15372/KhUR20150406
10. Сирин А.А., Маркина А.В., Минаева Т.Ю. Заболоченность Арктической зоны России // Болотные экосистемы Северо-Востока Европы и проблемы экологической реставрации: материалы междунар. полевого симп. (Инта–Сыктывкар–НарьянМар, 22 июля–4 авг. 2017 г.). Сыктывкар, 2017. С. 16–22. [Sirin A.A., Markina A.V., Minayeva T.Yu. Russian Arctic Wetlands. North-East Europe’s Wetland Ecosystems and Issues of Ecological Restoration: Proceedings of the International Field Symposium (Inta – Syktyvkar – Naryan-Mar, July 24 – August 4, 2017). Syktyvkar, 2017, pp. 16–22].
11. Соколов О.М., Ивко В.Р. Торфяные ресурсы Архангельской области и их использование. Архангельск: РИО АГТУ, 2000. 37 с. [Sokolov O.M., Ivko V.R. Peat Resources of the Arkhangelsk Region and Their Use. Arkhangelsk, ASTU Publ., 2000. 37 p.].
12. Тужилкина В.В. Реакция пигментной системы хвойных на длительное аэротехногенное загрязнение // Экология. 2009. № 4. С. 243–248. [Tuzhilkina V.V. Response of the Pigment System of Conifers to Long-Term Industrial Air Pollution. Ekologia [Russian Journal of Ecology], 2009, no. 4, pp. 243–248]. DOI: 10.1134/S1067413609040018
13. Указ Президента Российской Федерации от 07.05.2018 г. № 204 «О национальных целях и стратегических задачах развития Российской Федерации на период до 2024 года». Режим доступа: http://static.kremlin.ru/media/acts/files/0001201805070038.pdf (дата обращения: 09.12.19). [Presidential Executive Order No. 204 Dated May 7, 2018 “On National Goals and Strategic Objectives of the Russian Federation through to 2024”].
14.Чупахина Г.Н., Масленников П.В., Скрыпник Л.Н., Бессережнова М.И. Реакция пигментной и антиоксидантной систем растений на загрязнение окружающей среды г. Калининграда выбросами автотранспорта // Вестн. Том. гос. ун-та. Биология. 2012. № 2(18). С. 171–185. [Chupahina G.N., Maslennikov P.V., Skrypnik L.N., Besserezhnova M.I. Reaction of Pigmental and Antioxidant Systems of Plant on Environmental Pollution of Kaliningrad by Motor Transport Emission. Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya [Tomsk State University Journal of Biology], 2012, no. 2(18), pp. 171–185].
15. Шорин Н.А., Лапшин В.М. Материалы детальной разведки торфяного месторождения «Овечье» Холмогорского района Архангельской области. ПИИГипроторфразведка, Горьков. отд., 1961. 56 с. [Shorin N.A., Lapshin V.M. Materials of Detailed Exploration of the Peat Deposit “Ovech’ye” of the Kholmogory District, Arkhangelsk Region. PIIGi protorfrazvedka, Gor’kovskoye otdeleniye Publ., 1961. 56 p.].
16. Barrett S.E., Watmough S.A. Factors Controlling Peat Chemistry and Vegetation Composition in Sudbury Peatlands after 30 Years of Pollution Emission Reductions. Environmental Pollution, 2015, vol. 206, pp. 122–132. DOI: 10.1016/j.envpol.2015.06.021
17. González A.G., Jimenez-Villacorta F., Beike A.K., Reski R., Adamo P., Pokrovsky O.S. Chemical and Structural Characterization of Copper Adsorbed on Mosses (Bryophyta). Journal of Hazardous Materials, 2016, vol. 308, pp. 343–354. DOI: 10.1016/j.jhazmat.2016.01.060
18. Kimmel K., Mander Ü. Ecosystem Services of Peatlands: Implications for Restoration. Progress in Physical Geography: Earth and Environment, 2010, vol. 34, iss. 4, pp. 491–514. DOI: 10.1177/0309133310365595
19. Rosenburgh A., Alday J.G., Harris M.P.K., Allen K.A., Connor L., Blackbird S.J. et al. Changes in Peat Chemical Properties during Post-Fire Succession on Blanket Bog Moorland. Geoderma, 2013, vol. 211-212, pp. 98–106. DOI: 10.1016/j.geoderma.2013.07.012
20. Souter L., Watmough S.A. The Impact of Drought and Air Pollution on Metal Profiles in Peat Cores. Science of the Total Environment, 2016, vol. 541, pp. 1031–1040. DOI: 10.1016/j.scitotenv.2015.09.137
21. Vaasma T., Karu H., Kiisk M., Pensa M., Isakar K., Realo E. et al. Pb-210 and Fly Ash Particles in Ombrotrophic Peat Bogs as Indicators of Industrial Emissions. Journal of Environmental Radioactivity, 2017, vol. 174, pp. 78–86. DOI: 10.1016/j.jenvrad.2016.07.027
22. Yu Z.C. Northern Peatland Carbon Stocks and Dynamics: A Review. Biogeosciences, 2012, vol. 9, iss. 10, pp. 4071–4085. DOI: 10.5194/bg-9-4071-2012

Ссылка на английскую версию:

Pigment Composition of Sphagnum fuscum of Wetlands under Anthropogenic Impact

PIGMENT COMPOSITION OF Sphagnum fuscum OF WETLANDS UNDER ANTHROPOGENIC IMPACT

S.B. Selyanina1, Candidate of Engineering, Leading Research Scientist; ResearcherID: AAG-4781-2019, ORCID: https://orcid.org/0000-0003-0829-7518
V.G. Tatarintseva1, Postgraduate Student, Junior Research Scientist; ResearcherID: AAH-8581-2019, ORCID: https://orcid.org/0000-0001-6499-9202
I.N. Zubov1, Candidate of Chemistry, Senior Research Scientist; ResearcherID:
G-5351-2011, ORCID: https://orcid.org/0000-0003-3037-2449
N.A. Kutakova2, Candidate of Engineering, Assoc. Prof.; Researcher ID: T-1150-2019, ORCID: https://orcid.org/0000-0001-8195-2115
T.I. Ponomareva1, Junior Research Scientist; ResearcherID: AAG-4731-2019,
ORCID: https://orcid.org/0000-0001-7981-8072
1N. Laverov Federal Center for Integrated Arctic Research, UB RAS, Naberezhnaya Severnoy Dviny, 23, Arkhangelsk, 163000, Russian Federation; e-mail: gumin@fciarctic.ru
2Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; e-mail: n.kutakova@narfu.ru

Oligotrophic bogs prevail among wetlands in the mainland of the North of Russia. The study of the moss cover response to the increase in anthropogenic load makes it possible to reveal a shift in the ecological balance of bog ecosystems. The goаl of the research is to reveal changes in the pigment apparatus of the moss cover under drainage, road construction and mining operation as in the case of the Arkhangelsk region. Sphagnum fuscum (Schimp.) H. Klinggr. was used as the main object for studying the pigment composition of the photosynthetic apparatus. A change in the pigment composition during the drainage of bogs was found when comparing the pigments of S. fuscum moss on the undisturbed Ilas bog massif and the drained bog massif “Ovechye”; the content of carotenoids decreases and the content of chlorophyll a increases. The influence of the traffic load was studied in an open wetland of the Mezen district, where there is no tree-shrub layer. Succession of dominant species is observed in the moss-lichen layer of the bog in the immediate vicinity of the road (34 m); the projective cover of sphagnum mosses decreases to less than 10 %, and brie mosses emerge as dominants. The content of all analyzed pigments in moss samples increases with the distance from unpaved roads, especially the content of chlorophylls (>5 times at a distance of 100 m and more). As an example of the anthropogenic impact of a mining enter  prise, we used terricones of the Lomonosov Mining and Processing Plant, PJSC Severalmaz, from which aeolian transport of dust particles of rocks containing saponite occurs. Near the pollution source, the content of total moss pigments is noticeably lower than in the area protected by a forest belt. A decrease in the proportion of chlorophylls a and b with a slight increase in the content of carotenoids was found in the pigment complex. The changes are due to the transfer of saponite; a clay mineral that actively absorbs water. The increased moisture provides favorable conditions for the moss vegetation, which mitigates the negative effect of pollutants on the pigment apparatus of plants. Overall, pigments content change represents plants adaptation to the adverse impacts and anthropogenic pressing.
For citation: Selyanina S.B., Tatarintseva V.G., Zubov I.N., Kutakova N.A., Ponomareva T.I. Pigment Composition of Sphagnum fuscum of Wetlands under Anthropogenic Impact. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 6, pp. 120–131. DOI: 10.37482/0536-1036-2020-6-120-131
Funding: The study was carried out with the financial support of the Ministry of Education and Science of the Russian Federation within the framework of the research topic No. AAAA-A18-118012390224-1 and the Russian Foundation for Basic Research within the framework of the research projects No. 18-05-60151 (Arctic) and No. 18-05-70087 (Resources of the Arctic).

Keywords: chlorophyll, carotenoids, sphagnum, water-logged northern territories and their development.

Поступила 09.12.19 / Received on December 9, 2019