Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Динамика радиального прироста кедра сибирского Pinus sibirica Du Tour при различных режимах рубок уход

Версия для печати

Н.М. Дебков

Рубрика: Лесное хозяйство

Скачать статью (pdf, 0.6MB )

УДК

630*(561.21+582.475):630*24(571.1)

DOI:

10.17238/issn0536-1036.2019.6.9

Аннотация

Создание и формирование кедровников различного целевого назначения, и особенно кедросадов, является актуальной проблемой российского лесоводства. Рассмотрена динамика радиального прироста деревьев кедра сибирского Pinus sibirica Du Tour после рубок ухода с разными режимами (способ, число приемов и др.). Анализ выполнен как на уровне всего сообщества, так и по элементам леса. Исследования проведены на экспериментальных объектах, расположенных на территории Ханты-Мансийского автономного округа и Тюменской области в подзоне средней тайги. Установлено, что реакция кедра сибирского на рубки формирования кедросадов зависит от интенсивности, числа приемов и времени проведения рубок ухода, а также от возрастной и морфологической структуры кедра сибирского на вырубках и под пологом производных лесов. Выявлено, что экстенсивные кедросады формируются как при интенсивных, так и при систематических рубках ухода. В этом случае средний радиальный прирост колеблется от 3 до 5 мм/год, что обеспечивает не только ритмичный поступательный рост, но и физиологическое развитие. Как следствие, по истечении 30–35 лет практически все деревья уже вступили в генеративную фазу и активно семеносят. Однократные, особенно рубки с малой выборкой (менее 50 %), приводят к формированию интенсивных кедросадов со средним приростом ствола от 2 до 3 мм/год. Перегущенность древостоя не только снижает радиальный прирост кедра сибирского, но и замедляет скорость протекания онтогенетических стадий и фаз, поэтому в этих кедросадах присутствуют деревья, которые еще ни разу не давали урожая шишек.

Сведения об авторах

Н.М. Дебков1,2, канд. с.-х. наук, науч. сотр.; ResearcherID: H-1146-2019, ORCID: 0000-0003-3791-0369 
1Институт мониторинга климатических и экологических систем СО РАН, просп. Академический, д. 10/3, г. Томск, Россия, 634055; e-mail: nikitadebkov@yandex.ru
2Всероссийский НИИ лесоводства и механизации лесного хозяйства, ул. Институтская, д. 15, г. Пушкино, Московская область, Россия, 141202

Ключевые слова

кедр сибирский Pinus sibirica Du Tour, рубки ухода, структура древостоя, радиальный прирост ствола, Западная Сибирь

Для цитирования

Дебков Н.М. Динамика радиального прироста кедра сибирского Pinus sibirica Du Tour при различных режимах рубок ухода // Лесн. журн. 2019. № 6. С. 9–24. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2019.6.9

Литература

  1. Алексеев Ю.Б., Мишуков Н.П., Седых В.Н. Размещение деревьев в семенных участках кедра сибирского // Генетика, селекция, семеноводство и интродукция лесных пород. Воронеж: ЦНИИЛГиС, 1978. Вып. 5. С. 59–67. [Alekseyev Yu.B., Mishukov N.P., Sedykh V.N. Placing Trees in Seed Orchards of Siberian Pine. Genetics, Breeding, Seed Production and Introduction of Forest Species. Voronezh, TsNIILGiS Publ., 1975, vol. 5, pp. 59–67].
  2. Воробьев В.Н. Рост и начало генеративной фазы кедра сибирского // Интродукция древесных растений и вопросы семеноводства древесных пород как основа создания высокопродуктивных лесов. Новосибирск, 1981. С. 179–181. [Vorob’yev V.N. Growth and the Beginning of Generative Phase of Siberian Pine. Introduction of Forest Plants and Issues of Seed Production of Tree Species as a Basis for the Creation of Highly Productive Forests. Novosibirsk, 1981, pp. 179–181].
  3. Binkley D., Stape J.L., Bauerle W.L., Ryan M.G. Explaining Growth of Individual Trees: Light Interception and Efficiency of Light Use by Eucalyptus at Four Sites in Brazil. Forest Ecology and Management, 2010, vol. 259, pp. 1704–1713. DOI: 10.1016/ j.foreco.2009.05.037
  4. Bose A.K., Weiskittel A., Kuehne C., Wagner R.G., Turnblom E., Burkhart H.E. Does Commercial Thinning Improve Stand-Level Growth of the Three Most Commercially Important Softwood Forest Types in North America? Forest Ecology and Management, 2018, vol. 409, pp. 683–693. DOI: 10.1016/j.foreco.2017.12.008
  5. Caplat P., Anand M., Bauch C. Symmetric Competition Causes Population Oscillations in an Individual-Based Model of Forest Dynamics. Ecological Modelling, 2008, vol. 211, iss. 3-4, pp. 491–500. DOI: 10.1016/j.ecolmodel.2007.10.002
  6. Gradel A., Ammer C., Ganbaatar B., Nadaldorj O., Dovdondemberel B., Wagner S. On the Effect of Thinning on Tree Growth and Stand Structure of White Birch (Betula platyphylla Sukaczev) and Siberian Larch (Larix sibirica Ledeb.) in Mongolia. Forests, 2017, vol. 8, iss. 4, art. 105. DOI: 10.3390/f8040105
  7. Kuehne C., Weiskittel A.R., Wagner R.G., Roth B.E. Development and Evaluation of Individual Tree- and Stand-Level Approaches for Predicting Spruce-Fir Response to Commercial Thinning in Maine, USA. Forest Ecology and Management, 2016, vol. 376, pp. 84–95. DOI: 10.1016/j.foreco.2016.06.013
  8. Novák J., Dušek D., Slodičák M., Kacálek D. Importance of the First Thinning in Young Mixed Norway Spruce and European Beech Stand. Journal of Forest Science, 2017, vol. 63, no. 6, pp. 254–262. DOI: 10.17221/5/2017-JFS
  9. Omari K., MacLean D.A., Lavigne M.B., Kershaw J.A., Adams G.W. Effect of Local Stand Structure on Leaf Area, Growth, and Growth Efficiency Following Thinning of White Spruce. Forest Ecology and Management, 2016, vol. 368, pp. 55–62. DOI: 10.1016/ j.foreco.2016.03.005
  10. Peltola H., Miina J., Rouvinen I., Kellomäki S. Effect of Early Thinning on the Diameter Growth Distribution along the Stem of Scots Pine. Silva Fennica, 2002, vol. 36, no. 4, art. 523, pp. 813–825. DOI: 10.14214/sf.523
  11. Puettmann K.J., Wilson S.M., Baker S.C., Donoso P.J., Drössler L., Amente G., Harvey B.D., Knoke T., Lu Y., Nocentini S., Putz F.E., Yoshida T., Bauhus J. Silvicultural Alternatives to Conventional Even-Aged Forest Management – What Limits Global Adoption? Forest Ecosystems, 2015, vol. 2, art. 8. DOI: 10.1186/s40663-015-0031-x
  12. Pukkala T., Miina J., Kellomäki S. Response to Different Thinning Intensities in Young Pinus sylvestris. Scandinavian Journal of Forest Research, 1998, vol. 13, iss. 1-4, pp. 141–150. DOI: 10.1080/02827589809382970
  13. Ryan M.G., Binkley D., Fownes J.H. Age-Related Decline in Forest Productivity: Pattern and Process. Advances in Ecological Research. Ed. by M. Begon, A.H. Fitter. San Diego, Academic Press, 1997, vol. 27, pp. 213–262. DOI: 10.1016/S0065-2504(08)60009-4
  14. Schaedel M.S., Larson A.J., Affleck D.L.R., Belote R.T., Goodburn J.M., Wright D.K., Sutherland E.K. Long-Term Precommercial Thinning Effects on Larix occidentalis (Western Larch) Tree and Stand Characteristics. Canadian Journal of Forest Research, 2017, vol. 47, no. 7, pp. 861–874. DOI: 10.1139/cjfr-2017-0074
  15. Schwinning S., Weiner J. Mechanisms Determining the Degree of Size Asymmetry in Competition among Plants. Oecologia, 1998, vol. 113, iss. 4, pp. 447–455. DOI: 10.1007/ s004420050397
  16. Soares A.A.V., Leite H.G., Souza A.L., Silva S.R., Lourenço H.M., Forrester D.I. Increasing Stand Structural Heterogeneity Reduces Productivity in Brazilian Eucalyptus Monoclonal Stands. Forest Ecology and Management, 2016, vol. 373, pp. 26–32. DOI: 10.1016/j.foreco.2016.04.035
  17. Štefančík I. Development of Target (Crop) Trees in Beech (Fagus sylvatica L.) Stand with Delayed Initial Tending and Managed by Different Thinning Methods. Journal of Forest Science, 2013, vol. 59, no. 6, pp. 253–259. DOI: 10.17221/9/2013-JFS
  18. Tasissa G., Burkhart H.E. Modeling Thinning Effects on Ring Width Distribution in Loblolly Pine (Pinus taeda). Canadian Journal of Forest Research, 1997, vol. 27, no. 8, pp. 1291–1301. DOI: 10.1139/x97-092
  19. Thomas S.C., Halpern C.B., Falk D.A., Liguori D.A., Austin K.A. Plant Diversity in Managed Forests: Understory Responses to Thinning and Fertilization. Ecological Applications, 1999, vol. 9, iss. 3, pp. 864–879. DOI: 10.1890/1051-0761(1999)009[0864:PDIMFU]2.0.CO;2
  20. Valinger E., Sjögren H., Nord G., Cedergren J. Effects on Stem Growth of Scots Pine 33 Years after Thinning and/or Fertilization in Northern Sweden. Scandinavian Journal of Forest Research, 2018, vol. 34, iss. 1, pp. 33–38. DOI: 10.1080/02827581.2018.1545920
  21. Vincent M., Krause C., Zhang S.Y. Radial Growth Response of Black Spruce Roots and Stems to Commercial Thinning in the Boreal Forest. Forestry, 2009, vol. 82, iss. 5, pp. 557–571. DOI: 10.1093/forestry/cpp025
  22. Zeng J., Lei Y.-C., Jia H.-Y., Cai D.-X., Tang J.-X. Dynamic Growth Response of Pinus massoniana Plantation on Intensive Thinning in Southwestern Guangxi, China. Forest Research, 2017, vol. 30, iss. 2, pp. 335–341. DOI: 10.13275/j.cnki.lykxyj.2017.02.021

DINAMICS OF THE RADIAL GROWTH OF SIBERIAN PINE Pinus sibirica Du Tour UNDER DIFFERENT THINNING MODES

N.M. Debkov1,2, Candidate of Agriculture, Research Scientist; ResearcherID: H-1146-2019, ORCID: 0000-0003-3791-0369
1Institute of Monitoring of Climatic and Ecological Systems, SB RAS, prosp. Akademicheskiy, 10/3, Tomsk, 634055, Russian Federation; e-mail: nikitadebkov@yandex.ru
2All-Russian Research Institute of Silviculture and Mechanization of Forestry, ul. Institutskaya, 15, Pushkino, Moscow Region, 141202, Russian Federation
  
Creation and formation of Siberian pine forests for various purposes, and especially Siberian pine seed orchards, is an urgent issue of Russian forestry. The article deals with the dynamics of the radial growth of Siberian pine Pinus sibirica Du Tour trees after thinning with different  of the research it has been established that the response of Siberian pine to thinning depends on intensity, number of methods and timing, as well as on age and morphological structure of Siberian pine on clearings and under the canopy of secondary forests. It was found that extensive (low density) Siberian pine seed orchards are formed both under intensive and systematic thinning. In this case, the average radial growth ranges from 3 to 5 mm/yr, which provides not only a rhythmic progressive growth, but also physiological development. Thereby, after 30–35 years substantially all trees have already entered the generative phase and actively seeding. Single thinning, especially with small selection (less than 50 %) leads to the formation of intensive (high density) seed orchards with an average growth of trunk from 2 to 3 mm/yr. Overgdense, aside from reduction of Siberian pine radial growth, slows down the rate of ontogenetic stages and phases. As a result, in these seed orchards there are trees that have never given cones.
For citation: Dynamics of the Radial Growth of Siberian Pine Pinus sibirica Du Tour under Different Thinning Modes. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 6, pp. 9–24. DOI: 10.17238/issn0536-1036.2019.6.9

Keywords: Siberian pine Pinus sibirica Du Tour, thinning, structure of stands, radial growth of trunk, Western Siberia.

Поступила 15.01.19 / Received on January 15, 2019