Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Модификация фенолоформальдегидных смол отходами производства алюминия и целлюлозы

Версия для печати

Д.С. Русаков, Г.С. Варанкина, А.Н. Чубинский

Рубрика: Химическая переработка древесины

Скачать статью (pdf, 0.7MB )

УДК

674.812

DOI:

10.17238/issn0536-1036.2019.2.130

Аннотация

При производстве алюминия образуется большое количество техногенных отходов. Технологический процесс самообжигающихся анодов подразумевает образование следующих побочных продуктов: шламы газоочистки, пыль электрофильтров, хвосты флотации угольной пены, отходы шламового поля (шламы), шамотная и угольная футеровка электролизеров. Крупные города Сибирского региона России (Красноярск, Братск, Иркутск) вблизи городской черты имеют свалки многотоннажных неутилизированных отходов, которые создают угрозу природе и жителям городов. Оценена возможность применения отходов алюминиевого и целлюлозно-бумажного производств в качестве модификатора готовых фенолоформальдегидных смол. Пыль электрофильтров, представляющую собой химически активный мелкодисперсный порошок черного цвета, можно использовать для уменьшения токсичности синтетических смол и клеев на их основе, шлам холодного отстоя (полидисперсный, полифункциональный сополимер, который состоит из структурных единиц лигнина) – для модификации синтетических клеев. В ходе исследования определяли условную вязкость клея через 1 ч после введения модификатора, жизнеспособность клея, продолжительность отверждения и эмиссию формальдегида. Для обоснования технологии склеивания фанеры фенолоформальдегидным клеем на основе смолы СФЖ-3013, модифицированной отходами алюминиевого и целлюлозно-бумажного производств, проведен многофакторный эксперимент с определением содержания модификатора в смоле, продолжительности и давления прессования. Установлено, что введение в фенолоформальдегидные смолы отходов алюминиевого и целлюлозно-бумажного производств позволит снизить стоимость готовой продукции, утилизировать отходы промышленного производства, повысить прочность готовой продукции и сократить со-держание свободного формальдегида в ней.
Для цитирования: Русаков Д.С., Варанкина Г.С., Чубинский А.Н. Модификация фенолоформальдегидных смол отходами производства алюминия и целлюлозы // Лесн. журн. 2019. № 2. С. 130–140. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2019.2.130

Сведения об авторах

Д.С. Русаков, канд. техн. наук, доц.
Г.С. Варанкина, д-р техн. наук, проф.
А.Н. Чубинский, д-р техн. наук, проф.
Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., д. 5, Санкт-Петербург, Россия, 194021; e-mail: dima-ru25@ mail.ru, varagalina@yandex.ru, a.n.chubinsky@gmail.com

Ключевые слова

шпон, фанера, фенолоформальдегидная смола, модификация, отходы производства, пыль электрофильтров, шлам холодного отстоя, режимы склеивания, прочность готовой продукции, токсичность готовой продукции

Для цитирования

Русаков Д.С., Варанкина Г.С., Чубинский А.Н. Модификация фенолоформальдегидных смол отходами производства алюминия и целлюлозы // Лесн. журн. 2019. № 2. С. 130–140. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2019.2.130

Литература

1. Баранов А.Н., Гавриленко Л.В., Моренко А.В., Блашков А.А., Пентюхин С.И. Переработка твердых фторуглеродсодержащих отходов алюминиевого производства // Системы. Методы. Технологии. 2011. № 2(10). С. 113–115.
2. Бахман А., Мюллер К. Фенопласты. М.: Химия, 1978. 288 с.
3. Варанкина Г.С., Русаков Д.С. Модификация фенолоформальдегидной смолы побочными продуктами сульфатно-целлюлозного производства // Изв. СПбЛТА. 2013. № 204. С. 130–137.
4. ГОСТ 3916.1–96. Фанера общего назначения с наружными слоями из шпона лиственных пород. Технические условия. М.: Стандартинформ, 2008. 12 с.
5. ГОСТ 9624–2009. Древесина слоистая клееная. Метод определения предела прочности при скалывании. М.: Стандартинформ, 2010. 10 с.
6. ГОСТ 27678–2014. Плиты древесные и фанера. Перфораторный метод определения содержания формальдегида. М.: Стандартинформ, 2015. 8 с.
7. Еромасов Р.Г., Никифорова Э.М., Спектор Ю.Е. Утилизация отходов алюминиевого производства в керамической промышленности // Журн. Сиб. федер. ун-та. Техника и технологии. 2012. Т. 5, вып. 4. С. 442–453.
8. Крыжановский В.К., Кербер М.Л., Бурлов В.В., Паниматченко А.Д. Производство изделий из полимерных материалов: учеб. пособие. СПб.: Профессия, 2004. 464 с.
9. Русаков Д.С., Варанкина Г.С., Чубинский А.Н. Модификация феноло- и карбамидоформальдегидных смол побочными продуктами производства целлюлозы // Клеи. Герметики. Технологии. 2017. № 8. С. 16–20.
10. Русаков Д.С., Чубинский А.Н., Русакова Л.Н., Варанкина Г.С. Исследование свойств модифицированных фенолоформальдегидных клеев // Изв. СПбЛТА. 2018. Вып. 222. С. 155–174. DOI: 10.21266/2079-4304.2018.222.155-174
11. Шиманский А.Ф., Власов О.А., Никифорова Э.М., Еромасов Р.Г., Симонова Н.С., Васильева М.Н. Рециклинг шлаков высокотемпературного сжигания твердых бытовых отходов в технологии керамического кирпича // Фундаментальные исследования. 2016. № 3 (ч. 1). С. 76–81.
12. Chubov A., Tsaryov G., Matyushenkova E. Excusive Wood Protection Technique // Russian Forestry Review. 2008. No. 3. Р. 79.
13. Felby C., Hassingboe J., Lund M. Pilot-Scale Production of Fiberboards Made by Laccase Oxidized Wood Fibers: Board Properties and Evidence for Cross-Linking of Lignin // Enzyme and Microbial Technology. 2002. Vol. 31, iss. 6. Pp. 736–741. DOI: 10.1016/S0141-0229(02)00111-4
14. Friedl L. Concrete Sleeper Technology // European Railway Review. 2004. No. 2. Pp.73–78.
15. Hofrichter M. Review: Lignin Conversion by Manganese Peroxidase (MnP) // Enzyme and Microbial Technology. 2002. Vol. 30, iss. 4. Pp. 454–466. DOI: 10.1016/S0141-0229(01)00528-2
16. Leykauf G., Stahl W. Concrete Railway Sleepers for the Optimisation of Ballasted Track // European Railway Review. 2004. No. 2. Pp. 61–71.
17. Matyushenkova E. Wood Protection Techniques in Russia // Russian Forestry Review. 2008. No. 3. Pp. 76–78.
18. Sintonen K. Data Processing in a Plywood Factory // Raute News. Finlyandiya. 2002. Vol. 3, no. 2. P. 168.
19. Varankina G.S., Chubinsky A.N. Modification of Urea-Formaldehyde Resins Shungite Sorbents // Development and Modernization of Production: International Conference on Production Engineering, Bihac, 2013. Bihac: Bihac University, 2013. Pp. 1–4.

Поступила 20.09.18


UDC 674.812
DOI: 10.17238/issn0536-1036.2019.2.130

Modification of Phenol Formaldehyde Resins by Wastes of Aluminum
and Cellulosic Pulp Production

D.S. Rusakov, Candidate of Engineering Sciences, Associate Professor I-9245-20170000-0002-4344-2779
G.S. Varankina, Doctor of Engineering Sciences, Professor H-1922-20190000-0003-3470-5124
A.N. Chubinskiy, Doctor of Engineering Sciences, Professor I-9432-20160000-0001-7914-8056
Saint-Petersburg State Forest Technical University named after S.M. Kirov, Institutskiy per., 5, Saint Petersburg, 194021, Russian Federation; e-mail: dima-ru25@mail.ru, vara-galina@yandex.ru, a.n.chubinsky@gmail.com

In aluminum production a large amount of anthropogenic wastes is generated. The technological process of self-baking anodes implies formation of the following by-products: gas treatment sludge, electrostatic precipitator dust, skim flotation tailings, sludge field wastes (sludge), fireclay and carbon lining of reduction cells. Major cities of Siberia (Krasnoyarsk, Bratsk, Irkutsk) near the city limits have landfill sites of large-tonnage, unutilized wastes that pose a threat to the nature and city residents. In this regard, the possibility of using aluminum and pulp and paper production wastes as a modifier of finished phenol-formaldehyde resins was evaluated. Electrostatic precipitator dust, which is chemically active fine black powder, can be used for reducing the toxicity of synthetic resins and glues based on them, cold stack sludge (polydisperse, polyfunctional copolymer, which consists of lignin structural units) for modification of synthetic glues. Funnel viscosity of glue 1 hour after the modifier introduction, glue tack range, curing time and formaldehyde emission were determined as a part of the study. In order to substantiate the technology of plywood gluing by phenol-formaldehyde glue based on SFZh-3013 (СФЖ-3013) resin modified with wastes of aluminum and pulp and paper production a multifactorial experiment with determination of the modifier content in resin, duration and compacting pressure was carried out. It has been found that introduction of aluminum and pulp and paper production wastes into phenol-formaldehyde resins will allow reducing the costs of final products, recycling wastes of pulp and paper production, increasing the final product strength and decreasing the free formaldehyde content in it.

For citation: Rusakov D.S., Varankina G.S., Chubinskiy A.N. Modification of Phenol For-maldehyde Resins by Wastes of Aluminum and Cellulosic Pulp Production. Lesnoy Zhurnal [Forestry Journal], 2019, no. 2, pp. 130–140. DOI: 10.17238/issn0536-1036.2019.2.130

Keywords: veneer, plywood, phenol formaldehyde resin, modification, production wastes, electrostatic precipitator dust, cold stack sludge, gluing modes, strength of final products, toxicity of final products.

REFERENCES

1. Baranov A.N., Gavrilenko L.V., Morenko A.V., Blashkov A.A., Pentyukhin S.I. The Fluorine-Containing Solid Wastes Utilization in Aluminium Production. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2011, no. 2(10), pp. 113–115.
2. Bakhman A., Myuller K. Phenolic Plastics. Moscow, Khimiya Publ., 1978. 288 p.
3. Varankina G.S., Rusakov D.S. Modification of Phenol Resin by the By-Products of Sulphate Pulp Production. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii [News of the Saint Petersburg State Forest Technical Academy], 2013, iss. 204, pp. 130–137.
4. GOST 3916.1-96 Plywood with Outer Layers of Deciduous Veneer for General Use. Specifications. Moscow, Standartinform Publ., 2008. 12 p.
5. GOST 9624-2009 Laminated Glued Wood. Method for Determination of Shear Strength. Moscow, Standartinform Publ., 2010. 10 p.
6. GOST 27678-2014 Wood-Based Panels and Plywood. Perforator Method for Determination of Formaldehyde Content. Moscow, Standartinform Publ., 2015. 8 p.
7. Eromasov R.G., Nikiforova E.M., Spektor Yu.E. Recycling of Waste Aluminum Production in the Ceramic Industry. Zhurnal Sibirskogo federal’nogo universiteta. Tekhnika i tekhnologii [Journal of Siberian Federal University. Engineering and Technologies], 2012, vol. 5, no. 4, pp. 442–453.
8. Kryzhanovskiy V.K., Kerber M.L., Burlov V.V., Panimatchenko A.D. Manufacture of Products from Polymeric Materials: Educational Textbook. Saint Petersburg, Professiya Publ., 2004. 464 p.
9. Rusakov D.S., Varankina G.S., Chubinskiy A.N. Modification of Phenol- and Urea-Formaldehyde Resins by Additive Products of Cellulose Manufacture. Klei. Germetiki, Tekhnologii, 2017, no. 8, pp. 16–21.
10. Rusakov D.S., Chubinsky A.N., Rusakova L.N., Varankina G.S. Investigation of the Properties of Modified Phenol-Formaldehyde Adhesives. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii [News of the Saint Petersburg State Forest Technical Academy], 2018, iss. 222, pp. 155–174. DOI: 10.21266/2079-4304.2018.222.155-174
11. Shimanskiy A.F., Vlasov O.A., Nikiforova E.M., Eromasov R.G., Simonova N.S., Vasileva M.N. Recycling of Slag from High-Temperature Incineration of Municipal Solid Waste in the Technology of Ceramic Bricks. Fundamental’nyye issledovaniya [Fundamental Research], 2016, iss. 3, part 1, pp. 76–81.
12. Chubov A., Tsaryov G., Matyushenkova E. Excusive Wood Protection Technique. Russian Forestry Review, 2008, no. 3, p. 79.
13. Felby C., Hassingboe J., Lund M. Pilot-Scale Production of Fiberboards Made by Laccase Oxidized Wood Fibers: Board Properties and Evidence for Cross-Linking of Lignin. Enzyme and Microbial Technology, 2002, vol. 31, iss. 6, pp. 736–741. DOI: 10.1016/S0141-0229(02)00111-4
14. Friedl L. Concrete Sleeper Technology. European Railway Review, 2004, no. 2, pp.73–78.
15. Hofrichter M. Review: Lignin Conversion by Manganese Peroxidase (MnP). Enzyme and Microbial Technology, 2002, vol. 30, iss. 4, pp. 454–466. DOI: 10.1016/S0141-0229(01)00528-2
16. Leykauf G., Stahl W. Concrete Railway Sleepers for the Optimisation of Ballasted Track. European Railway Review, 2004, no. 2, pp. 61–71.
17. Matyushenkova E. Wood Protection Techniques in Russia. Russian Forestry Review, 2008, no. 3, pp. 76–78.
18. Sintonen K. Data Processing in a Plywood Factory. Raute News. Finlyandiya, 2002, vol. 3, no. 2, p. 168.
19. Varankina G.S., Chubinsky A.N. Modification of Urea-Formaldehyde Resins Shungite Sorbents. Development and Modernization of Production. International Conference on Production Engineering, Bihac, 2013. Bihac, Bihac University. 2013, pp. 1–4.

Received on September 20, 2018