Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: 8(8182) 21-61-18 архив |
А.Н. Иванкин, В.Г. Санаев, Г.А. Горбачева, А.К. Агеев, Д.П. Кирюхин, Г.А. Кичигина, П.П. Кущ Рубрика: Химическая переработка древесины Скачать статью (pdf, 0.3MB )УДК544.54:678.743DOI:10.17238/issn0536-1036.2018.2.122АннотацияИзучен процесс поверхностной модификации фторированными полимерами целлюлозосодержащих материалов, в качестве которых использовали древесный шпон и бумагу. Для модификации свойств материалов применяли растворы сополимера гексафторпропилена с винилиденфторидом марки Ф-26, а также растворы радиационно-синтезированных теломеров тетрафторэтилена марки «Черфлон» (ТФ-4). Изучены изменения физико-механических свойств обработанных и необработанных материалов, а также защитное воздействие нанесенных фторполимеров на огнестойкость и способность изучаемых объектов удерживать внутренние химические компоненты, входящие в состав композитов, при их модельной экстракции органическими растворителями (смесь метанола с хлороформом). Прочность при растяжении вдоль волокон, обработанных 5 %-м раствором Ф-26 образцов сосны, бука и березы, составила соответственно 136, 158 и 140 МПа, а обработанных ТФ-4 – 145, 162, 148 МПа против 103, 140 и 136 МПа у исходных образцов. Установлено, что поверхностная обработка на 20...45 % упрочняет бумажные образцы. Исследование экстрагируемости защищенных материалов методом хроматомасс-спектрометрии показало, что нанесение защитной поверхностной пленки фторполимеров на 10...150 % снижает возможные потери веществ в экстракт, а также изменяет химический состав экстрагируемой композиции, в которой преобладают соединения природных жирных кислот, карбонитрилов, бензофуранов, амидов и хинонов. Испытание прямого воздействия пламени на целлюлозосодержащие материалы подтвердило, что нанесение фторированного покрытия на 20...50 оС увеличивает их огнестойкость и позволяет варьировать декоративные свойства материалов.Сведения об авторахА.Н. Иванкин1, д-р хим. наук, проф.В.Г. Санаев1, д-р техн. наук, проф. Г.А. Горбачева1, канд. техн. наук, доц. А.К. Агеев1, студ. Д.П. Кирюхин2, д-р хим. наук, проф. Г.А. Кичигина2, канд. хим. наук, ст. науч. сотр. П.П. Кущ2, канд. хим. наук, ст. науч. сотр. 1Московский государственный технический университет им. Н.Э. Баумана (Мытищинский филиал), 1-я Институтская ул., д. 1, г. Мытищи, Московская область, Россия, 141005; e-mail: aivankin@inbox.ru, aivankin@mgul.ac.ru 2Институт проблем химической физики РАН, просп. акад. Семенова, д. 1, г. Черноголовка, Московская область, Россия, 142432 Ключевые словадревесный шпон, бумага, сополимер гексафторпропилена с винилиденфторидом, Ф-26, теломеры тетрафторэтилена, ТФ-4Для цитированияИванкин А.Н., Санаев В.Г., Горбачева Г.А., Агеев А.К., Кирюхин Д.П., Кичигина Г.А., Кущ П.П. Модификация свойств природных целлюлозосодержащих композиционных материалов фторсополимерами и теломерами тетрафторэтилена // Лесн. журн. 2018. № 2. С. 122–132. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2018.2.122Литература1. Алдошин С.М., Барелко В.В., Кирюхин Д.П., Кущ П.П., Петряков Д.Н., Дорохов В.Г., Быков Л.А., Смирнов Ю.Н. Разработка технологических основ изготовления стеклополимерных композиционных материалов с применением в качестве связующего олигомеров (теломеров) тетрафторэтилена // Докл. Академии наук. 2013. Т. 449, № 1. С. 55–59.2. Большаков А.И., Кичигина Г.А., Кирюхин Д.П. Радиационный синтез теломеров при постоянной концентрации тетрафторэтилена в ацетоне // Химия высоких энергий. 2009. Т. 43, № 6. С. 512–515. 3. Бондалетова Л.И., Бондалетов В.Г. Полимерные композиционные мате-риалы. Томск: Томск. политехн. ун-т, 2013. 111 с. 4. Иванкин А.Н., Неклюдов А.Д., Вострикова Н.Л. Биологически активные соединения природного происхождения. Получение и структурно-функциональные взаимосвязи. Саарбрюккен: АР Lambert Academic Publishing, 2011. 488 с. 5. Иванкин А.Н., Тевлина А.С., Загорец П.А. О механизме радиационной прививки метил-α-фторакрилата и α, β, β-трифторстирола на перфторированный сополимер // Высокомолекулярные соединения. 1983. Сер. А. Т. XXV, № 4. С. 812–817. 6. Кирюхин Д.П., Кичигина Г.А., Бузник В.М. Теломеры тетрафторэтилена: радиационно-химический синтез, свойства и перспективы использования // Высоко-молекулярные соединения. 2013. Сер. А. Т. 55, № 11. С. 1321–1332. 7. Кононов Г.Н. Дендрохимия: химия, нанохимия и биогеохимия компонентов клеток, тканей и органов древесины: моногр.: в 2 т. М.: МГУЛ, 2015. 1111 с. 8. Корольченко А.Я., Корольченко Д.А. Пожаровзрывоопасность веществ и материалов и средства их тушения: справ.: в 2 ч. 2-е изд., перераб. и доп. М.: Ассоци-ация «Пожнаука», 2004. Ч. 1 – 713 с. Ч. 2 – 774 с. 9. Новые достижения в химии и химической технологии растительного сырья: материалы III Всерос. конф., 23–27 апр. 2007 г.: в 3 кн. / под ред. Н.Г. Базарновой, В.И. Маркина. Барнаул: Алт. ун-т, 2007. Кн. 1 – 271 с. Режим доступа: http://conf.chem.asu.ru/ public/conferences/3/biblio/conf-2007/sbornik_tezis-2007-kniga-I.pdf (дата обращения: 20.10.2017). 10. Фляте Д.М. Технология бумаги. М.: Лесн. пром-сть, 1988. 440 с. 11. Ahmed S., Bui M.N., Abbas A. Paper-Based Chemical and Biological Sensors: Engineering Aspects // Biosensors and Bioelectronics. 2016. Vol. 77, no. 3. Pp. 249‒263. 12. Autoignition Point of Selected Substances. Available at: http://dobrokot.ru/ pics/i2014-07-08__01-52-26_27kb.png (дата обращения: 20.10.2017). 13. Café T. Physical Constants for Investigators. Available at: http://www.tcforensic. com.au/docs/article10.html#2.1 (дата обращения: 20.10.2017). 14. Carlsson L.A., Lindstrom T. A Shear-Lag Approach to the Tensile Strength of Paper // Composites Science and Technology. 2005. Vol. 65, no. 2. Pp.183–189. 15. Fajgar R., Vitek J., Pola J., Bastl Z., Tlaskal J., Gregora I., McGhee L., Steven-son P.R., Winfield J.M. IR Laser Degradation of Some Fluoro-Polymers // Journal of Fluo-rine Chemistry. 1995. Vol. 72, no. 1. Pp. 111‒116. 16. Fermeglia M., Pricl S. Molecular Dynamics Simulations of Real Systems: Application to Chloro-Fluoro-Hydrocarbons and Polymers // Fluid Phase Equilibria. 1999. Vol. 158–160, no. 6. Pp. 49‒58. 17. John A., Chen Y., Ko H.U., Kim J. Preparation of Fluoro Derivative of Cellulose Acetate with (1,1,1,3,3,3)-Hexafluoro-2-Propanol by Mitsunobu Reaction and Its Character-ization // Carbohydrate Polymers. 2011. Vol. 84, no. 1. Pp. 677‒680. 18. Kovalchuk N.M., Trybala A., Starov V., Matar O., Ivanova N. Fluoro- vs Hydro-carbon Surfactants: Why do They Differ in Wetting Performance // Advances in Colloid and Interface Science. 2014. Vol. 210, no. 8. Pp. 65‒71. 19. Kumar G.G., Kim A.R., Nahm K.S., Yoo D.J., Elizabeth R. High Ion and Lower Molecular Transportation of the Poly Vinylidene Fluoride–Hexafluoropropylene Hybrid Membranes for the High Temperature and Lower Humidity Direct Methanol Fuel Cell Ap-plications // Journal of Power Sources. 2010. Vol. 195, no. 18. Pp. 5922‒5928. 20. Nikitina T.S. αββ-Trifluorostyrene and Polymers Based on It // Russian Chemical Reviews. 1990. Vol. 59, no. 6. Pp. 575‒589. 21. Xu L., Xu L., Dai W., Tsuboi T., Xie H. Preparation and Characterization of a Novel Fluoro-Silicone Acrylate Copolymer by Semi-Continuous Emulsion Polymerization // Journal of Fluorine Chemistry. 2013. Vol. 153, no. 9. Pp. 68‒73. Поступила 18.11.17 Ссылка на английскую версию:Modification of Properties of Natural Cellulose-Containing Composite Materials by Fluoroelastomers and Tetrafluoroethylene Telomers
UDC 544.54:678.743 DOI: 10.17238/issn0536-1036.2018.2.122 Modification of Properties of Natural Cellulose-Containing Composite Materials by Fluoroelastomers and Tetrafluoroethylene Telomers A.N. Ivankin1, Doctor of Chemical Sciences, Professor V.G. Sanaev1, Doctor of Engineering Sciences, Professor G.A. Gorbacheva1, Candidate of Engineering Sciences, Associate Professor A.K. Ageev1, Student D.P. Kiryukhin2, Doctor of Chemical Sciences, Professor G.A. Kichigina2, Candidate of Chemical Sciences, Senior Research Officer P.P. Kushch2, Candidate of Chemical Sciences, Senior Research Officer 1Bauman Moscow State Technical University, Pervaya Institutskaya ul., 1, Mytishchi, Moscow region, 141005, Russian Federation; e-mail: aivankin@inbox.ru, aivankin@mgul.ac.ru 2Institute of Problems of Chemical Physics of the Russian Academy of Sciences, pr. Akademika Semenova, 1, Chernogolovka,142432, Russian Federation The paper presents the study of the surface modification process of cellulose-containing materials (wood veneer and paper) by fluorinated polymers. The solutions of a copolymer of hexafluoropropylene with vinylidene fluoride of grade F-26, and solutions of radiation-synthesized telomeres of tetrafluoroethylene of the Cherflon brand (TF-4) are used to modify the properties of materials. Changes in the physical and mechanical properties of treated and raw materials, as well as the protective effect of applied fluoropolymers on fire resistance and the ability of the studied objects to retain the internal chemical components of the composites during their model extraction by organic solvents (a mixture of methanol and chloroform) are studied. The tensile strength along the fibers treated with 5 % F-26 solution of pine, beech and birch samples is 136, 158 and 140 MPa, respectively, and those treated with TF-4 are 145, 162, 148 MPa against 103, 140 and 136 MPa for the original samples. Surface treatment of paper samples leads to their hardening by 20…45 %. A study of the extractability of protected materials by chromatography-mass spectrometry shows that applying a protective surface film of fluoropolymers reduces possible losses of substances to the extract by 10...150 %, and changes the chemical composition of the extractable composition, in which the compounds of natural fatty acids, carbonitriles, benzofurans, amides and quinones predominate. The test of direct flame effect on cellulose-containing materials confirms that the application of a fluorinated coating to 20...50 °С increases their fire resistance and allows varying decorative properties of materials. Keywords: wood veneer, paper, vinylidene fluoride-hexafluoropropylene copolymer, F-26, tetrafluoroethylene telomers, TF-4. REFERENCES 1. Aldoshin S.M., Barelko V.V., Kiryukhin D.P., Kushch P.P., Petryakov D.N., Dorokhov V.G., Bykov L.A., Smirnov Yu.N. Razrabotka tekhnologicheskikh osnov izgotovleniya steklopolimernykh kompozitsionnykh materialov s primeneniem v kachestve svyazuyushchego oligomerov (telomerov) tetraftoretilena [Development of Technological Foundations of Production of Glass/Polymer Composite Materials Using Tetrafluoroethylene Oligomers (Telomers) as Binders]. Doklady Akademii nauk [Proceedings of the Russian Academy of Sciences], 2013, vol. 449, no. 1, pp. 55–59.2. Bol'shakov A.I., Kichigina G.A., Kiryukhin D.P. Radiatsionnyy sintez telomerov pri postoyannoy kontsentratsii tetraftoretilena v atsetone [Radiation Synthesis of Telomers at a Constant Tetrafluoroethylene Concentration in Acetone]. Khimiya vysokikh energiy [High Energy Chemistry], 2009, vol. 43, no. 6, pp. 512–515. 3. Bondaletova L.I., Bondaletov V.G. Polimernye kompozitsionnye materialy [Polymeric Composite Materials]. Tomsk, TPU Publ., 2013. 111 p. (In Russ.) 4. Ivankin A.N., Neklyudov A.D., Vostrikova N.L. Biologicheskia ktivnye soedineniya prirodnogo proiskhozhdeniya. Poluchenie I strukturno-funktsional'nye vzaimosvyazi [Biologically Active Compounds of Natural Origin. Productionand Structural and Functional Relationships]. Saarbrücken, АР Lambert Academic Publ., 2011. 488 p. (In Russ.) 5. Ivankin A.N., Tevlina A.S., Zagorets P.A. O mekhanizme radiatsionnoy privivki metil-α-ftorakrilatai α, β, β-triftorstirola na perftorirovannyy sopolimer [On the Mechanism of Radiation Inoculation of Methyl-α-Fluoroacrylate and α, β, β-Trifluorostyrene on the Perfluorinated Copolymer]. Vysokomolekulyarnye soedineniya [Polymer Science], 1983, vol. 25, no. 4, pp. 812–817. 6. Kiryukhin D.P., Kichigina G.A., Buznik V.M. Telomery tetraftoretilena: radiatsionno-khimicheskiy sintez, svoystva i perspektivy ispol'zovaniya [Tetrafluoroethylene Telomers: Radiation-Initiated Chemical Synthesis, Properties, and Application Prospects]. Vysokomolekulyarnye soedineniya. Ser. A [Polymer Science. Ser. A], 2013, vol. 55, no. 11, pp. 1321–1332. 7. Kononov G.N. Dendrokhimiya: khimiya, nanokhimiya i biogeokhimiya komponentov kletok, tkaney I organov drevesiny. V 2 t. [Dendrochemistry: Chemistry, Nanochemistry and Biogeochemistry of Components of Cells, Tissues and Organs of Wood. In 2 Vol.]. Moscow, MSFU Publ., 2015. 1111 p. (In Russ.) 8. Korol'chenko A.Ya., Korol'chenko D.A. Pozharo vzryvoopasnost' veshchestv i materialov I sredstva ikh tusheniya [Fire and Explosion Hazard of Substances and Materials and Extinguishing Agents]. Moscow, Pozhnauka Publ., 2004. Part 1, 713 p.; Part 2, 774 p. (In Russ.) 9. Bazarnova N.G., MarkinV.I., eds. Novye dostizheniya v khimiii khimicheskoy tekhnologii rastitel'nogo syr'ya: materialy III Vseros. konf., 23–27 apr. 2007 g. V 3 kn. [New Achievements in Chemistry and Chemical Technology of Plant Raw Materials: Proc. 3d All-Russ. Conf., April 23–27, 2007. In 3 Books]. Barnaul, ASU Publ., 2007. Book 1. 271 p. Available at: http://conf.chem.asu.ru/public/conferences/3/biblio/conf-2007/ sbornik_tezis-2007-kniga-I.pdf (accessed 20.10.2017). 10. Flyate D.M. Tekhnologiya bumagi [Paper Technology]. Moscow, Lesnaya promyshlennost' Publ., 1988. 440 p. (In Russ.) 11.Ahmed S., Bui M.N., Abbas A. Paper-Based Chemical and Biological Sensors: Engineering Aspects. Biosensors and Bioelectronics, 2016, vol. 77, no. 3, pp. 249‒263. 12. Autoignition Point of Selected Substances. Available at: http://dobrokot.ru/ pics/i2014-07-08__01-52-26_27kb.png (accessed 20.10.2017). 13. Café T. Physical Constants for Investigators. Available at: http://www. tcforensic.com.au/docs/article10.html#2.1 (accessed 20.10.2017). 14. Carlsson L.A., Lindstrom T. A Shear-Lag Approach to the Tensile Strength of Paper. Composites Science and Technology, 2005, vol. 65, no. 2, pp. 183–189. 15. Fajgar R., Vitek J., Pola J., Bastl Z., Tlaskal J., Gregora I., McGhee L., Stevenson P.R., Winfield J.M. IR Laser Degradation of Some Fluoro-Polymers. Journal of Fluorine Chemistry, 1995, vol. 72, no. 1, pp. 111‒116. 16. Fermeglia M., Pricl S. Molecular Dynamics Simulations of Real Systems: Application to Chloro-Fluoro-Hydrocarbons and Polymers. Fluid Phase Equilibria, 1999, vol. 158‒160, no. 6, pp. 49‒58. 17. John A., Chen Y., Ko H.U., Kim J. Preparation of Fluoro Derivative of Cellulose Acetate with (1,1,1,3,3,3)-Hexafluoro-2-Propanol by Mitsunobu Reaction and Its Characterization. Carbohydrate Polymers, 2011, vol. 84, no. 1, pp. 677‒680. 18. Kovalchuk N.M., Trybala A., Starov V., Matar O., Ivanova N. Fluoro- vs Hydrocarbon Surfactants: Why do They Differ in Wetting Performance. Advances in Colloid and Interface Science, 2014, vol. 210, no. 8, pp. 65‒71. 19. Kumar G.G., Kim A.R., Nahm K.S., Yoo D.J., Elizabeth R. High Ion and Lower Molecular Transportation of the Poly Vinylidene Fluoride–hexa Fluoro Propylene Hybrid Membranes for the High Temperature and Lower Humidity Direct Methanol Fuel Cell Applications. Journal of Power Sources, 2010, vol. 195, no. 18, pp. 5922‒5928. 20. Nikitina T.S. αββ-Trifluorostyrene and Polymers Based on It. Russian Chemical Reviews, 1990, vol. 59, no. 6, pp. 575‒589. 21. Xu L., Xu L., Dai W., Tsuboi T., Xie H. Preparation and Characterization of a Novel Fluoro-Silicone Acrylate Copolymer by Semi-Continuous Emulsion Polymerization. Journal of Fluorine Chemistry, 2013, vol. 153, no. 9, pp. 68‒73.
Received on November 18, 2017
For citation: Ivankin A.N., Sanaev V.G., Gorbacheva G.A., Ageev A.K., Kiryukhin D.P., Kichigina G.A., Kushch P.P. Modification of Properties of Natural Cellulose-Containing Composite Materials by Fluoroelastomers and Tetrafluoroethylene Telomers. Lesnoy zhurnal [Forestry journal], 2018, no. 2, pp. 122–132. DOI: 10.17238/issn0536-1036.2018.2.122 |