Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: 8(8182) 21-61-18 архив |
Д.К. Арленинов, Д.А. Беккер Рубрика: Механическая обработка древесины Скачать статью (pdf, 0.5MB )УДК691.11DOI:10.17238/issn0536-1036.2015.6.128АннотацияНа ползучесть древесины под действием длительной нагрузки в значительной степени влияет уровень напряжения в конструкции. Ранее деформационные свойства исследовались в меньшей степени, и в стадии нелинейной ползучести. Поэтому отсутствуют экспериментальные данные длительных испытаний при небольших уровнях напряжений, позволяющих получить зависимость «напряжение–относительные деформации». Цель проводимых исследований – получение количественных оценок ползучести древесины, выраженных в полных (упругих и остаточных) относительных деформациях при проектных уровнях напряжений. Длительные испытания четырех деревянных образцов ели, выпиленных из одной доски, проводили в режиме «изгиб» при разных уровнях напряжений (от 2 до 13 МПа) в сухом теплом помещении при стабильном температурно-влажностном режиме. Влажность образцов при испытаниях составляла 6 %. Достоверность результатов испытаний, приведенных к 12 % влажности по известным формулам, оценивали сравнением вычисленных значений кратковременного и длительного модулей упругости с нормативными значениями. Полученные результаты подтвердили предпосылку о влиянии уровня напряжений на ползучесть и продолжительность процесса. При малых уровнях нормальных напряжений в середине пролета затухание ползучести произошло в течение первого месяца, при напряжениях, близких к расчетному сопротивлению, – по истечении шести месяцев. В течение седьмого месяца нарастание прогиба не наблюдалось. По замерам прогибов в течение всего времени испытаний вычисляли фактические значения полных относительных деформаций. Полученные данные были использованы для построения графиков «полные относительные деформации–продолжительность выдержки» для каждого образца. Эти графики легли в основу представленной в статье зависимости «напряжения– полные относительные деформации», которую можно применить для определения модуля деформаций. В заключении сделан вывод, что для построения достоверной эмпирической зависимости и дальнейшей аппроксимации исследования надо продолжить, увеличив количество образцов и расширив диапазон напряжений. Сведения об авторах@ Д.К. Арленинов, д-р техн. наук, проф. Д.А. Беккер, зав. лаб. Московский государственный строительный университет, Ярославское ш., 26, Москва, Россия, 129337; е-mail: dkarleninov@mail.ru; vonbeck@mail.ru Ключевые словаползучесть древесины, длительная нагрузка, модуль упругости, относительные деформацииЛитератураСПИСОК ЛИТЕРАТУРЫ
1. Балтрушайтис А.В. Прочность и стойкость деревянных клееных конструкций с различной толщиной слоев: дис. … канд. техн. наук. М., 1986. 182 с. 2. Белянкин Ф.П. Длительное сопротивление древесины. М.: Стройиздат, 1934. 345 с. 3. Зубарев Г.Н. Разработка и исследования клееных конструкций для покрытий промышленных зданий: дис. … канд. техн. наук. М., 1954. 202 с. 4. Иванов Ю.М. К методике определения деформаций деревянных конструкций в покрытиях зданий// Строительство. 1990. № 6. С. 107–109. 5. Иванов Ю.М. О предельных состояниях деревянных элементов, соединений и конструкций. М.: Стройиздат, 1947. 280 с. 6. Иванов А.М. Прикладная теория ползучести древесины: сб. науч. тр. Воронеж: ВоронежИСИ, 1957. № 6. 87 с. 7. Клименко В.З. Феноменологический подход к расчету сжато-изгибаемых деревянных элементов//Строительная механика и расчет сооружений. 2011. № 1. С. 7–11. 8. Линьков Н.В. Несущая способность и деформативность соединений деревянных конструкций композиционным материалом на основе матрицы и стеклоткани: дис. … канд. техн. наук. МГСУ, 2010. 154 с. 9. Пятикрестовский К.П. К вопросу о выборе модулей упругости при расчете деревянных конструкций на прочность, устойчивость и по деформациям//Строитель-ная механика и расчет сооружений. 2012. № 6. С. 73–79. 10. Рощина С.И. Прочность и деформативность клееных армированных конструкций при длительном действии нагрузки: дис. …. д-ра техн. наук. Владимир, 2009. 259 с. 11. Цепаев В.А. Оценка модуля упругости древесины конструкций//Жилищное строительство. 2003. № 2. С.11–13. Поступила 22.05.15 Ссылка на английскую версию:Effects of Stress Level on Wood Creep under Bending
UDC 691.11
Effects of Stress Level on Wood Creep under Bending
D.K. Arleninov, Doctor of Engineering Sciences, Professor D.A. Bekker, Head of Laboratory Moscow State University of Civil Engineering, 26, Yaroslavskoye Shosse, Moscow, 129337, Russian Federation; e-mail: dkarleninov@mail.ru; vonbeck@mail.ru The stress level in the structure largely influences on the rate of wood creep under the steady load. Previously deformation properties were investigated in a lesser extent, in the stage of nonlinear creep. Therefore, there are no experimental data of long-term tests at low stress levels, allowing us to obtain the “stress – strain” dependence. The purpose of the experimental studies is to obtain the quantitative estimates of wood creep, expressed in total (elastic and residual) strain at the design stress levels of various rates. Long-term tests of four spruce samples, sawn from one board, were carried out in the mode of “bending” at different stress levels of 2 uA … 13 uA. The tests were carried out in a dry and warm room under the stable thermal and moist conditions. Samples moisture content during the tests was 6 %. The test validity, reduced to 12 % of moisture by the known formulas, was estimated by comparing the calculated values of short-term and long-term modulus of elasticity and the standard values. The study results confirmed the prerequisite about the impact of the stress level on the value and period of the creep process. At low levels of normal stress the creep attenuation in the midspan occurred within the first month. At stresses close to the calculated resistance the creep attenuation in the samples occurred in six months. During the seventh month the increase of deflection was not observed. According to the measurements of deflections at the test period the actual values of total strains were calculated. These values were used for “total strain – hold time” plotting for each sample. These graphs were the basis of the presented in the paper dependence “stress – total strain”, which can be used to determine the modulus of deformation. It is concluded, that for the construction of reliable empirical dependence and further approximation it is necessary to continue the research by increasing the number of samples and the range of stress levels.
Keywords: wood creep, steady load, modulus of elasticity, strain.
REFERENCES
1. Baltrushaytis A.V. Prochnost' i stoykost' derevyannykh kleenykh konstruktsiy s razlichnoy tolshchinoy sloev: dis. kand. tekhn. nauk [Strength and Resistance of Wooden Glued Structures with Different Thickness of Layers: Cand. Eng. Sci. Diss.]. Moscow, 1986. 182 p. 2. Belyankin F.P. Dlitel'noe soprotivlenie drevesiny [Continuous Resistance of Wood]. Moscow, 1934. 345 p. 3. Zubarev G.N. Razrabotka i issledovaniya kleenykh konstruktsiy dlya pokrytiy promyshlennykh zdaniy: dis. … kand. tekhn. nauk [Development and Research of Glued Structures for Industrial Buildings Coating: Cand. Eng. Sci. Diss.]. Moscow, 1954. 202 p. 4. Ivanov Yu.M. K metodike opredeleniya deformatsiy derevyannykh konstruktsiy v pokrytiyakh zdaniy [To the Technique of Strain Definition of Wooden Structures in the Building Covering]. Izvestiya VUZov. Stroitel'stvo [News of Higher Educational Institutions. Construction], 1990, no. 6, pp. 107–109. 5. Ivanov Yu.M. O predel'nykh sostoyaniyakh derevyannykh elementov, soedineniy i konstruktsiy [On Limit States of Wooden Elements, Compounds and Constructions]. Moscow, 1947. 280 p. 6. Ivanov A.M. Prikladnaya teoriya polzuchesti drevesiny [Applied Theory of Wood Creep]. Sbornik nauchnykh trudov Voronezhskogo ISI [Proc. Civil Engineering Institute of Voronezh], 1957, no. 6. 87 p. 7. Klimenko V.Z. Fenomenologicheskiy podkhod k raschetu szhato-izgibaemykh derevyannykh elementov [Phenomenological Approach to the Calculation of Beam Wooden Column]. Stroitel'naya mekhanika i raschet sooruzheniy, 2011, no. 1, pp. 7–11. 8. Lin'kov N.V. Nesushchaya sposobnost' i deformativnost' soedineniy derevyannykh konstruktsiy kompozitsionnym materialom na osnove m atritsy i steklotkani: dis. … kand. tekhn. nauk [Load Bearing Capacity and Deformability of Joints of Wooden Structures by Composite Materials on the Basis of Matrix and Fiberglass: Cand. Eng. Sci. Diss.].
9. Pyatikrestovskiy K.P. K voprosu o vybore moduley uprugosti pri raschete derevyannykh konstruktsiy na prochnost', ustoychivost' i po deformatsiyam [On the Selection of the Elastic Moduli in the Calculation of Timber Structures for Strength, Stability and Deformation]. Stroitel'naya mekhanika i raschet sooruzheniy, 2012, no. 6,
10. Roshchina S.I. Prochnost' i deformativnost' kleenykh armirovannykh konstruktsiy pri dlitel'nom deystvii nagruzki: dis. … dokt. tekhn. nauk [Strength and Deformability of Glued Reinforced Structures under Long-Term Loads: Doc. Eng. Sci. Diss.]. Vladimir, 2009. 259 p. 11. Tsepaev V.A. Otsenka modulya uprugosti drevesiny konstruktsiy [Evaluation of the Modulus of Elasticity of Wooden Structures]. Zhilishchnoe stroitel'stvo [Housing Construction], 2003, no. 2, pp. 11–13.
Received on May 22, 2015 |