Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: +7 (8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/
e-mail: forest@narfu.ru
|
Разработка модели биомассы Picea L. и Abies L. для региональных условий Евразии. С. 38–54
|
|
В.А. Усольцев, И.С. Цепордей, И.М. Данилин
Рубрика: Лесное хозяйство
Скачать статью
(pdf, 2.2MB )
УДК
630*52:630*174.754
DOI:
10.37482/0536-1036-2022-6-38-54
Аннотация
Лесные экосистемы играют большую роль в стабилизации климата, и непрерывный мониторинг их биомассы имеет первостепенное значение. Технология бортового лазерного сканирования получила широкое распространение при оценке биомассы деревьев за счет дистанционной регистрации таких таксационных показателей деревьев и древостоев, как ширина и площадь проекции кроны, высота дерева и древостоя. В работе использована авторская база эмпирических данных 1550 модельных деревьев ели Picea L. и 535 пихты Abies L. Евразии. База данных содержит сведения о высоте дерева, ширине и длине кроны, биомассе ствола, листвы, ветвей и корней. Выявлено, что наибольшую информативность имеют 2-факторные аллометрические модели компонентов биомассы, включающие в качестве независимых переменных ширину кроны и высоту дерева. Для всех компонентов биомассы установлена положительная связь с шириной кроны и высотой дерева. На статистически достоверном уровне биомасса компонентов одинаковых по размеру деревьев пихты на 45–71 % больше, чем у ели. Это можно объяснить тем, что при одной и той же высоте дерева ширина кроны у пихты на 11 % меньше по сравнению с елью. Оценен вклад зимних температур и осадков в изменчивость компонентов биомассы. Биомасса всех компонентов равновеликих деревьев описывается пропеллерообразной 3D-зависимостью. В теплых регионах при повышении количества осадков биомасса увеличивается, по мере перехода к холодным регионам зависимость характеризуется противоположным или нейтральным трендом. С ростом температуры во влажных регионах биомасса становится больше, по мере перехода в сухие условия – меньше. Включение в аллометрическую модель длины кроны как дополнительной независимой переменной практически не улучшило ее прогностическую способность. Вклад таксационных показателей деревьев, их видовой принадлежности и климатических переменных в объяснение изменчивости компонентов биомассы составляет соответственно 72,9; 13,5 и 13,6 %. Климатические переменные в наибольшей степени объясняют изменчивость биомассы стволов и надземной биомассы (от 18 до 20 %), в наименьшей степени – хвои и ветвей (от 8 до 9 %). Полученные результаты могут быть полезны при лазерном мониторинге биомассы лесов и прогнозировании возможных изменений структуры биомассы деревьев в случае климатических отклонений.
Благодарности: Работа выполнена в рамках госзадания FEUZ-2021-0014.
Сведения об авторах
В.А. Усольцев1,2*, д-р с.-х. наук, проф.; ResearcherID: M-8253-2018, ORCID: https://orcid.org/0000-0003-4587-8952
И.С. Цепордей1, канд. с.-х. наук, науч. сотр.; ResearcherID: AAC-5377-2020, ORCID: https://orcid.org/0000-0002-4747-5017
И.М. Данилин3, д-р с.-х. наук, проф.; Researcher ID: AAS-4960-2020, ORCID: https://orcid.org/0000-0001-9706-6927
1Ботанический сад УрО РАН, ул. 8 Марта, д. 202 а, г. Екатеринбург, Россия, 620144; usoltsev50@mail.ru*, ivan.tsepordey@yandex.ru
2Уральский государственный лесотехнический университет, ул. Сибирский тракт, д. 37, г. Екатеринбург, Россия, 620100; usoltsev50@mail.ru
3Институт леса им. В.Н. Сукачева Сибирского отделения РАН, Академгородок, д. 50, г. Красноярск, Россия, 660036; danilin@ksc.krasn.ru
Ключевые слова
гидротермические градиенты, компоненты биомассы, лазерное зондирование деревьев, аллометрические модели, средняя температура января, годовое количество осадков, ель, пихта
Литература
-
Белов С.В., Арцыбашев Е.С. Изучение отражательной способности древесных пород // Ботан. журн. 1957. Т. 42, № 4. С. 517–534.
-
Белов М.Л., Фесенко Ю.С., Городничев В.А., Кувшинов А.В. Лазерный мониторинг состояния растительного покрова по данным измерений коэффициентов отражения // Радиооптика. МГТУ им. Н.Э. Баумана. Электрон. журн. 2016. № 3. С. 1–17. https://doi.org/10.7463/rdopt.0316.0840843
-
Вейисов С., Каплин В.Г. К методике определения надземной фитомассы белого саксаула в Восточных Каракумах // Проблемы освоения пустынь. 1976. № 1. С. 60–64.
-
Данилин И.М., Медведев Е.М., Мельников С.Р. Лазерная локация Земли и леса. Красноярск: Ин-т леса им. В.Н. Сукачева СО РАН, 2005. 182 с.
-
Поздняков Л.К., Протопопов В.В., Горбатенко В.М. Биологическая продуктивность лесов Средней Сибири и Якутии. Красноярск: Кн. изд-во, 1969. 155 с.
-
Самойлович Г.Г. Применение авиации и аэрофотосъемки в лесном хозяйстве. М.; Л.: Гослесбумиздат, 1953. 476 с.
-
Усольцев В.А. Рост и структура фитомассы древостоев. Новосибирск: Наука, 1988. 253 с.
-
Усольцев В.А. Формирование банков данных о фитомассе лесов. Екатеринбург: УрО РАН, 1998. 541 с.
-
Усольцев В.А., Воробейчик Е.Л., Бергман И.Е. Биологическая продуктивность лесов Урала в условиях техногенного загрязнения: Исследование системы связей и закономерностей. Екатеринбург: УГЛТУ, 2012. 365 с.
-
Усольцев В.А., Усольцева Р.Ф. Аппроксимирование надземной фитомассы березы и осины по диаметру и высоте ствола // Вестн. с.-х. науки Казахстана. 1977. № 7. С. 83–89.
-
Усольцев В.А., Часовских В.П., Норицин Д.В. Возрастная динамика и структура фитомассы деревьев ели и пихты в лесах Евразии // Эко-потенциал. 2015. № 4(12). С. 11–13.
-
Baskerville G.L. Use of Logarithmic Regression in the Estimation of Plant Biomass. Canadian Journal of Forest Research, 1972, vol. 2, no. 1, pp. 49–53. https://doi.org/10.1139/x72-009
-
Blanchette D., Fournier R.A., Luther J.E., Côté J.-F. Predicting Wood Fiber Attributes Using Local-Scale Metrics from Terrestrial LiDAR Data: A Case Study of Newfoundland Conifer Species. Forest Ecology and Management, 2015, vol. 347, pp. 116–129. https://doi.org/10.1016/j.foreco.2015.03.013
-
Burger H. Der Kronenaufbau gleichalteriger Nadelholzbestände. Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen, 1939, vol. 21, iss. 1, pp. 5–57. (In Ger.).
-
Cannell M.G.R. Woody Biomass of Forest Stands. Forest Ecology and Management, 1984, vol. 8, iss. 3-4, pp. 299–312. https://doi.org/10.1016/0378-1127(84)90062-8
-
Chave J., Réjou-Méchain M., Búrquez A., Chidumayo E., Colgan M.S., Delitti W.B.C. et al. Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Global Change Biology, 2014, vol. 20, iss. 10, pp. 3177–3190. https://doi.org/10.1111/gcb.12629
-
Fu L., Liu Q., Sun H., Wang Q., Li Z., Chen E., Pang Y., Song X., Wang G. Development of a System of Compatible Individual Tree Diameter and Aboveground Biomass Prediction Models Using Error-in-Variable Regression and Airborne LiDAR Data. Remote Sensing, 2018, vol. 10, iss. 2, art. 325. https://doi.org/10.3390/rs10020325
-
Fu W., Wu Y. Estimation of Aboveground Biomass of Different Mangrove Trees Based on Canopy Diameter and Tree Height. Procedia Environmental Sciences, 2011, vol. 10, part C, pp. 2189–2194. https://doi.org/10.1016/j.proenv.2011.09.343
-
Goodman R.C., Phillips O.L., Baker T.R. The Importance of Crown Dimensions to Improve Tropical Tree Biomass Estimates. Ecological Applications, 2014, vol. 24, iss. 4, pp. 680–698. https://doi.org/10.1890/13-0070.1
-
Hancock S., Anderson K., Disney M., Gaston K.J. Measurement of Fine-Spatial-Resolution 3D Vegetation Structure with Airborne Waveform Lidar: Calibration and Validation with Voxelised Terrestrial Lidar. Remote Sensing of Environment, 2017, vol. 188, pp. 37–50. https://doi.org/10.1016/j.rse.2016.10.041
-
Jucker T., Caspersen J., Chave J., Antin C., Barbier N., Bongers F. et al. Allometric Equations for Integrating Remote Sensing Imagery into Forest Monitoring Programmes. Global Change Biology, 2017, vol. 23, iss. 1, pp. 177–190. https://doi.org/10.1111/gcb.13388
-
Kindermann G.E., McCallum I., Fritz S., Obersteiner M. A Global Forest Growing Stock, Biomass and Carbon Map Based on FAO Statistics. Silva Fennica, 2008, vol. 42, no. 3, pp. 387–396. https://doi.org/10.14214/sf.244
-
Li J., Hu B., Noland T.L. Classification of Tree Species Based on Structural Features Derived from High Density LiDAR Data. Agricultural and Forest Meteorology, 2013, vol. 171-172, pp. 104–114. https://doi.org/10.1016/j.agrformet.2012.11.012
-
Machimura T., Fujimoto A., Hayashi K., Takagi H., Sugita S. A Novel Tree Biomass Estimation Model Applying the Pipe Model Theory and Adaptable to UAV-Derived Canopy Height Models. Forests, 2021, vol. 12, iss. 2, art. 258. https://doi.org/10.3390/f12020258
-
Neuville R., Bates J.S., Jonard F. Estimating Forest Structure from UAV-Mounted LiDAR Point Cloud Using Machine Learning. Remote Sensing, 2021, vol. 13, iss. 3, art. 352. https://doi.org/10.3390/rs13030352
-
Poorter H., Jagodzinski A.M., Ruiz-Peinado R., Kuyah S., Luo Y., Oleksyn J., Usoltsev V.A., Buckley T.N., Reich P.B., Sack L. How Does Biomass Allocation Change with Size and Differ among Species? An Analysis for 1200 Plant Species from Five Continents. New Phytologist, 2015, vol. 208, iss. 3, pp. 736–749. https://doi.org/10.1111/nph.13571
-
Ubuy M.H., Eid T., Bollandsås O.M., Birhane E. Aboveground Biomass Models for Trees and Shrubs of Exclosures in the Drylands of Tigray, Northern Ethiopia. Journal of Arid Environments, 2018, vol. 156, pp. 9–18. https://doi.org/10.1016/j.jaridenv.2018.05.007
-
Usoltsev V.A. Single-Tree Biomass Data for Remote Sensing and Ground Measuring of Eurasian Forests. Yekaterinburg, USFEU Publ., 2020. https://doi.org/10.13140/RG.2.2.31984.00001
-
Usoltsev V.A., Shobairi S.O.R., Chasovskikh V.P. Triple Harmonization of Transcontinental Allometric of Picea spp. and Abies spp. Forest Stand Biomass. Ecology, Environment and Conservation, 2018, vol. 24, no. 4, pp. 1966–1972. Available at: https://www.elibrary.ru/item.asp?id=36459345 (accessed 23.04.21)
-
Usoltsev V.A., Shobairi S.O.R., Tsepordey I.S., Ahrari A., Zhang M., Shoaib A.A., Chasovskikh V.P. Are There Differences in the Response of Natural Stand and Plantation Biomass to Changes in Temperature and Precipitation? A Case for Two-Needled Pines in Eurasia. Journal of Resources and Ecology, 2020, vol. 11, no. 4, pp. 331–341. https://doi.org/10.5814/j.issn.1674-764x.2020.04.001
-
Vanninen P., Ylitalo H., Sievänen R., Mäkelä A. Effects of Age and Site Quality on the Distribution of Biomass in Scots Pine (Pinus sylvestris L.). Trees, 1996, vol. 10, iss. 4, pp. 231–238. https://doi.org/10.1007/BF02185674
-
West G.B., Brown J.H., Enquist B.J. A General Model for the Origin of Allometric Scaling Laws in Biology. Science, 1997, vol. 276, iss. 5309, pp. 122–126. https://doi.org/10.1126/science.276.5309.122
-
World Weather Map. Maps of World. Available at: https://www.mapsofworld.com/referrals/weather (accessed 23.04.21)
-
Zeng W.S., Duo H.R., Lei X.D., Chen X.Y., Wang X.J., Pu Y., Zou W.T. Individual Tree Biomass Equations and Growth Models Sensitive to Climate Variables for Larix spp. in China. European Journal of Forest Research, 2017, vol. 136, pp. 233–249. https://doi.org/10.1007/s10342-017-1024-9
|
Электронная подача статей
Журнал награжден «Знаком признания активного поставщика данных 2024 года»
|