Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: +7 (8182) 21-61-18 о журнале |
С.В. Анискин, В.С. Куров Рубрика: Химическая переработка древесины Скачать статью (pdf, 1MB )УДК66.021.3.001.57:532.529АннотацияПоказано, что современное развитие технологии производства целлюлозы связано с совершенствованием оборудования систем «газ–жидкость», обеспечивающего основные технологические процессы варки целлюлозы и регенерации химических реактивов. Кроме того, это оборудование, предназначенное для рекуперации химических реактивов и снижения их выбросов в окружающую среду, является частью технологического процесса. Применение скрубберов в производстве целлюлозы имеет преимущества относительно других направлений, поскольку при этом используется замкнутый цикл регенерации варочного раствора. Исследования процессов, протекающих в скрубберах разного типа, становятся более многочисленными и фундаментальными. Одним из широко применяемых скрубберов с орошением газа струями капель является струйный газопромыватель, обладающий рядом положительных свойств: не создает сопротивления газовому потоку в газоходе, имеет тягодутьевые свойства вследствие эжекции. Только эти аппараты обеспечивают необходимые условия для устойчивости газового потока и струйного эффекта, позволяющего значительно повысить качество очистки выбросов. Для применения струйного эффекта и интенсификации работы технологического оборудования требуется описание процессов переноса вещества в струйных газопромывателях с учетом полидисперсной структуры капельного потока и особенностей дробления жидкости на капли центробежно-струйными форсунками. Научные работы, посвященные проблеме реализации струйного эффекта, показали необходимость исследования динамики дробления жидкости в центробежно-струйных форсунках, создающих заполненную каплями струю с большим углом раскрытия. Цель исследования – изучение скорости начального движения капель в области, расположенной непосредственно после участка дробления сплошной струи жидкости, вытекающей из форсунки. Для эксперимента применена фотографическая методика с двумя искровыми лампами. Одновременно контролировалось распределение плотности орошения. Результаты измерения распределений абсолютной скорости капель и плотности орошения сравнивались между собой и определялась функция распределения скорости жидкости в поперечном сечении газо-жидкостной струи струйного газопромывателя. На основе полученных данных разработана теоретическая модель, позволяющая установить начальную скорость движения капель центробежно-струйных форсунок – показатель необходимый для разработки новых струйных газопромывателей. Результаты могут быть применены для совершенствования технологических процессов производства целлюлозы.Сведения об авторахС.В. Анискин, д-р техн. наук, проф.; ORCID: https://orcid.org/0000-0001-8819-381XВ.С. Куров, д-р техн. наук, проф.; ResearcherID: V-7289-2017, ORCID: https://orcid.org/0000-0002-7168-9613 Санкт-Петербургский государственный университет промышленных технологий и дизайна, ул. Ивана Черных, д. 4, Санкт-Петербург, Россия, 198095; е-mail: asv-47@mail.ru, vskurov18@mail.ru Ключевые словапроизводство целлюлозы, газожидкостное оборудование, струйный газопромыватель, струя, каплиДля цитированияАнискин С.В., Куров В.С. Динамические характеристики скорости истечения жидкости из форсунок в струйных газопромывателях целлюлозного производства // Изв. вузов. Лесн. журн. 2021. № 2. С. 180–193. DOI: 10.37482/0536-1036-2021-2-180-193Литература1. Анискин С.В. Струйный эффект очистки газа в прямоточном распылительном аппарате // ЖПХ. 2010. Т. 83, № 6. С. 966–970. [Aniskin S.V. Jet Effect of Gas Treating in a Uniflow Sprinkling Apparatus. Zhurnal Prikladnoi Khimii [Russian Journal of Applied Chemistry], 2010, vol. 83, no. 6, pp. 966–970]. DOI: 10.1134/S1070427210060170 2. Анискин С.В. Проблема развития систем газ–жидкость в ЦБП и возможность применения струйных газопромывателей // Целлюлоза, бумага, картон. 2016. № 1. С. 56–62. [Aniskin S.V. The Problem of Development of Gas-Liquid Systems in the Pulp and Paper Industry and the Possibility of Using Jet Scrubbers. Tsellyuloza, bumaga, karton, 2016, no. 1, pp. 56–62]. 3. Анискин С.В. Столкновение капель при распыливании жидкости в струйном газопромывателе // Междунар. науч. период. изд. по итогам междунар. науч.-практ. конф. МНПК–66 «Новая наука: от идеи к результату». Стерлитамак: РИЦ АМИ, 2016. № 2-3. С. 152–155. [Aniskin S.V. Collision of Droplets during Liquid Atomization in a Jet Scrubber. International Scientific Periodical Based on the Results of the International Scientific and Practical Conference MNPK-66 “New Science: From Idea to Result”. Sterlitamak, AMI Publ., 2016, no. 2-3, pp. 152–155]. 4. Анискин С.В., Куров В.С. Исследование условий десорбции сероводорода при дроблении жидкости центробежно-струйной форсункой // Вестн. СПГУТД. Сер. 1. 2018. № 4. С. 55–60. [Aniskin S.V., Kurov V.S. The Study of Hydrogen Sulfide Desorption Conditions during the Fragmentation of the Liquid by Centrifugal-Jet Nozzle. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta tekhnologii i dizayna. Seriya 1 [Vestnik of St. Petersburg State University of Technology and Design. Series 1. Natural and technical science], 2018, no. 4, pp. 55–60]. 5. Братчиков Г.Г. Очистка газовых выбросов в целлюлозно-бумажной промышленности. М.: Лесн. пром-сть, 1989. 255 с. [Bratchikov G.G. Purification of Gas Emissions in the Pulp and Paper Industry. Moscow, Lesnaya promyshlennost’ Publ., 1989. 255 p.]. 6. Галустов В.С. Прямоточные распылительные аппараты в теплоэнергетике. М.: Энергоатомиздат, 1989. 240 с. [Galustov V.S. Direct-Flow Spraying Apparatuses in Heat Power Engineering. Moscow, Energoatomizdat Publ., 1989. 240 p.]. 7. Галустов В.С., Анискин С.В., Михайлов Е.А. Распыливающие устройства с заполненным факелом для орошения тепло- и массообменных аппаратов. Обзорная информация. Сер. ХМ-1. М.: Химия, 1984. 33 с. [Galustov V.S., Aniskin S.V., Mikhaylov E.A. Spraying Devices with a Filled Flare for Irrigation of Heat and Mass Transfer Apparatuses. Overview Information. Series KhM-1. Moscow, Khimiya Publ., 1984. 33 p.]. 8. Гусакова М.А., Цыганов С.П., Мискевич И.В., Личутина Т.Ф. Экологическая оценка производства целлюлозно-бумажной продукции в ОАО «Монди Сыктывкарский ЛПК» // Целлюлоза. Бумага. Картон. 2008. № 7. С. 70–75. [Gusakova M.A., Tsyganov S.P., Miskevich I.V., Lichutina T.F. Ecological Assessment of Pulp and Paper Production at Mondi Syktyvkar. Tsellyuloza. Bumaga. Karton, 2008, no. 7, pp. 70–75]. 9. Леончик Б.И., Маякин В.П. Измерения в дисперсных потоках. М.: Энергия, 1971. 248 с. [Leonchik B.I., Mayakin V.P. Measurements in Dispersed Flows. Moscow, Energiya Publ., 1971. 248 p.]. 10. Личутина Т.Ф., Гусакова М.А., Вишнякова А.П. Оценка фактического состояния газовых выбросов в атмосферу на предприятиях ЦБП Северо-Запада России в соответствии нормативам ЕС // Целлюлоза, бумага, картон. 2009. № 3. С. 69–74. [Lichutina T.F., Gusakova M.A., Vishnyakova A.P. Assessment of Real State of Gas Emissions into the Atmosphere at the Pulp and Paper Industry Enterprises of the North-West of Russia in Accordance with EU Standards. Tsellyuloza. Bumaga. Karton, 2009, no. 3, pp. 69–74]. 11. Наилучшие существующие технологии в целлюлозно-бумажной промышленности. СПб.: Экология и бизнес, 2004. 509 с. [The Best Existing Technologies in the Pulp and Paper Industry. Saint Petersburg, Ekologiya i biznes Publ., 2004. 509 p.]. 12. Пажи Д.Г., Галустов В.С. Основы техники распыливания жидкостей. М.: Химия, 1984. 254 с. [Pazhi D.G., Galustov V.S. Fundamentals of Liquid Spraying Techniques. Moscow, Khimiya Publ., 1984. 254 p.]. 13. Патент 2688761С1 Российская Федерация, МПК. В 01 D 47/4. Пенный массообменный аппарат / С.В Анискин, А.Г. Запорожец; заявитель и патентообладатель С.В Анискин, А.Г. Запорожец: № 2018144394/04: заявл. 14.12.2018: опубл. 22.05.2019, Бюл. № 15. [Aniskin S.V., Zaporozhets A.G. Foam Mass Exchange Apparatus. Patent RF, no. RU 2688761 C1, 2019]. 14. Пен Р.З. Технология целлюлозы: в 2 т. Т. 1. Производство сульфатной целлюлозы. Красноярск: СибГТУ, 2000. 236 с. [Pen R.Z. Pulp Technology: In 2 Vol. Vol. 1. Sulphate Pulp Production. Krasnoyarsk, SibSAU Publ., 2000. 236 p.]. 15. Протодьяконова О.И., Анискин С.В., Кадашевич Ю.И. Влияние полидисперсного состава капель на гидродинамику газожидкостной струи // ЖПХ. 2001. Т. 74, № 12. С. 1994–2000. [Protod’yakonova O.I., Aniskin S.V., Kadashevich Y.I. Effect of Polydisperse Drop Composition on Hydrodynamics of Gas-Fluid Jet. Zhurnal Prikladnoi Khimii [Russian Journal of Applied Chemistry], 2001, vol. 74, no. 12, pp. 1994–2000]. DOI: 10.1023/A:1015546807859 16. Рамм B.M. Абсорбция газов. M.: Химия, 1976. 655 с. [Ramm V.M. Absorption of Gases. Moscow, Khimiya Publ., 1976. 655 p.]. 17. Ситтиг М. Защита окружающей среды в целлюлозно-бумажной промышленности. М.: Лесн. пром-сть, 1981. 280 с. [Sittig M. Pulp and Paper Manufacture: Energy Conservation and Pollution Prevention. Translated from English. Moscow, Lesnaya Promyshlennost’ Publ., 1977. 280 p.] 18. Технология целлюлозно-бумажного производства: в 3 т. Т. 1, ч. 1. Древесное сырье и производство полуфабрикатов. СПб.: ЛТА, 2002. 424 с. [Technology of Pulp and Paper Production: In 3 Vol. Vol. 1, Part 1. Wood Raw Materials and Production of Semi-Finished Products. Saint Petersburg, LTA Publ., 2002. 424 p.]. 19. Торф А.И., Прохоров Б.В., Пасечник С.П., Максимов В.Ф. Пылеулавливание мокрым способом в сульфатно-целлюлозном производстве. М.: ВНИПИЭИлеспром, 1980. Вып. 7. 32 с. [Torf A.I., Prokhorov B.V., Pasechnik S.P., Maksimov V.F. Wet Dust Collection in Sulphate Pulp Production. Moscow, VNIPIEIlesprom Publ., 1980, vol. 7, p. 32]. 20. Ужов В.Н., Вальдберг А.Ю. Очистка газов мокрыми фильтрами. М.: Химия, 1975. 216 с. [Uzhov V.N., Val’dberg A.Yu. Purification of Gases with Wet Filters. Moscow, Khimiya Publ., 1975. 216 p.]. 21. Федеральный закон «Об охране окружающей среды»: от 10.01.2002 N 7-ФЗ. Доступ из правовой системы «КонсультантПлюс». [Federal Law “On Environmental Protection” Dated on January 1, 2002 No. 7-FZ]. 22. Широков С.Н., Ермаков А.В. Современный подход к проектированию установок газоочистки // Химическое и нефтегазовое машиностроение. 2005. № 1. С. 37–39. [Shirokov S.N., Ermakov A.V. The Current Approach to Designing Gas-Cleaning Equipment. Khimicheskoe i Neftegazovoe Mashinostroenie [Chemical and Petroleum Engineering], 2005, no. 1, pp. 37–39]. DOI: 10.1007/s10556-005-0054-1 23. Agrawal K.S. Performance of Venturi Scrubber. International Journal of Engineering Research and Development, 2013, vol. 7, iss. 11, pp. 53–69. 24. Al-Sarkhi A., Hanratty T.J. Effect of Pipe Diameter on the Drop Size in a Horizontal Annular Gas–Liquid Flow. International Journal of Multiphase Flow, 2002, vol. 28, iss. 10, pp. 1617–1629. DOI: 10.1016/S0301-9322(02)00048-4 25. Beji T., Zadeh S.E., Maragkos G., Merci B. Influence of the Particle Injection Rate, Droplet Size Distribution and Volume Flux Angular Distribution on the Results and Computational Time of Water Spray CFD Simulations. Fire Safety Journal, 2017, vol. 91, pp. 586–595. DOI: 10.1016/j.firesaf.2017.03.040 26. Breton K., Fleck B.A., Nobes D.S. A Parametric Study of a Flash Atomized Water Jet Using a Phase Doppler Particle Analyzer. Atomization and Sprays, 2013, vol. 23, iss. 9, pp. 799–817. DOI: 10.1615/AtomizSpr.2013007728 27. Costa M.A.M., Ribeiro A.P.R.A., Tognetti É.R., Aguiar M.L., Gonçalves J.A.S., Coury J.R. Performance of a Venturi Scrubber in the Removal of Fine Powder from a Confined Gas Stream. Materials Research, 2005, vol. 8, no. 2, pp. 177–179. DOI: 10.1590/S1516-14392005000200016 28. Das S.K., Biswas M.N. Studies on Ejector-Venturi Fume Scrubber. Chemical Engineering Journal, 2006, vol. 119, iss. 2-3, pp. 153–160. DOI: 10.1016/j.cej.2006.03.019 29. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Official Journal of the European Union, 2008, pp. 1–44. 30. Fathikalajahi J., Taheri M., Talaie M.R. Theoretical Study of Nonuniform Droplets Concentration Distribution on Venturi Scrubber Performance. Particulate Science and Technology, 1996, vol. 14, iss. 2, pp. 153–164. DOI: 10.1080/02726359608906691 31. Fore L.B., Ibrahim B.B., Beus S.G. Visual Measurements of Droplet Size in Gas-Liquid Annular Flow. International Journal of Multiphase Flow, 2002, vol. 28, iss. 12, pp. 1895–1910. DOI: 10.1016/S0301-9322(02)00121-0 32. Gamisans X., Sarrà M., Lafuente F.J. Fluid Flow and Pumping Efficiency in an Ejector-Venturi Scrubber. Chemical Engineering and Processing: Process Intensification, 2004, vol. 43, iss. 2, pp. 127–136. DOI: 10.1016/S0255-2701(03)00104-1 33. Gamisans X., Sarrà M., Lafuente F.J., Azzopardi B.J. The Hydrodynamics of Ejector-Venturi Scrubbers and Their Modelling by an Annular Flow/Boundary Layer Model. Chemical Engineering Science, 2002, vol. 57, iss. 14, pp. 2707–2718. DOI: 10.1016/S0009-2509(02)00171-9 34. Gonçalves J.A.S., Costa M.A.M., Aguiar M.L., Coury J.R. Atomization of Liquids in a Pease-Anthony Venturi Scrubber: Part II. Droplet Dispersion. Journal of Hazardous Materials, 2004, vol. 116, iss. 1-2, pp. 147–157. DOI: 10.1016/j.jhazmat.2004.08.030 35. Guerra V.G., Gonçalves J.A.S., Coury J.R. Experimental Investigation on the Effect of Liquid Injection by Multiple Orifces in the Formation of Droplets in a Venturi Scrubber. Journal of Hazardous Materials, 2008, vol. 16, iss. 1, pp. 351–359. DOI: 10.1016/j.jhazmat.2008.03.101 36. Han Z., Liu B., Yang S., Pan X., Yan Z. NOX Removal from Simulated Marine Exhaust Gas by Wet Scrubbing Using NaClO Solution. Journal of Chemistry, 2017, vol. 2017, art. 9340856. DOI: 10.1155/2017/9340856 37. Harry-Ngei N., Ubong I., Ede P.N. A Review of the Scrubber as a Tool for the Control of Flue Gas Emissions in a Combustion System. European Journal of Engineering Research and Science, 2019, vol. 4, no. 11, рр. 1–4. DOI: 10.24018/ejers.2019.4.11.1561 38. Jet scrubbers. Official Website of the GEA Group Aktiengesellschaft. 2020. Available at: https://www.gea.com/en/products/emission-control/gas-scrubbers/jet-scrubbers.jsp (accessed 05.12.20). 39. Kandar T.K., Vhora S.F., Iyer K., Prabhu S.V. Experimental Investigation of the 700 MWe Containment Spray System Spray Nozzles/System. Atomization and Sprays, 2017, vol. 27, iss. 8, pp. 665–690. DOI: 10.1615/AtomizSpr.2017019352 40. Pak S.I., Chang K.S. Performance Estimation of a Venturi Scrubber Using a Computational Model for Capturing Dust Particles with Liquid Spray. Journal of Hazardous Materials, 2006, vol. 138, iss. 3, pp. 560–573. DOI: 10.1016/j.jhazmat.2006.05.105 41. Puentes N.A.G., Zoccal J.V.M., Guerra V.G., Coury J.R., Gonçalves J.A.S. Use of a Short Duration Electronic Flash in the Study of the Trajectory of Liquid Jet in a Pease-Anthony Venturi Scrubber. Materials Science Forum, 2010, vol. 660-661, pp. 537–542. DOI: 10.4028/www.scientific.net/MSF.660-661.537 42. Shilyaev M.I., Khromova E.M. Modeling of Heat and Mass Transfer and Absorption-Condensation Dust and Gas Cleaning in Jet Scrubbers. Mass Transfer – Advances in Sustainable Energy and Environment Oriented Numerical Modeling. Ed. by H. Nakajima. Rijeka, Croatia, InTech, 2013, pp. 163–194. DOI: 10.5772/53094 43. Srilatha C., Morab V.V., Mundada T.P., Patwardhan A.W. Relation between Hydrodynamics and Drop Size Distributions in Pump–Mix Mixer. Chemical Engineering Science, 2010, vol. 65, iss. 11, pp. 3409–3426. DOI: 10.1016/j.ces.2010.02.035 44. Sundararaj S., Selladurai V. Flow and Mixing Pattern of Transverse Turbulent Jet in Venturi-Jet Mixer. Arabian Journal for Science and Engineering, 2013, vol. 38, no. 12, pp. 3563–3573. DOI: 10.1007/s13369-013-0643-9 45. Tran T.A. Research of the Scrubber Systems to Clean Marine Diesel Engine Exhaust Gases on Ships. Journal of Marine Science: Research & Development, 2017, vol. 7, iss. 6, art. 243. DOI: 10.4172/2155-9910.1000243 46. Yoon S.S. Droplet Distribution at the Liquid Core of a Turbulent Spray. Physics of Fluids, 2005, vol. 17, iss. 3, art. 035103. DOI:10.1063/1.1852577 Ссылка на английскую версию:Dynamic Behavior of Liquid Flow Rate from Nozzles in Jet Scrubbers of Pulp Production
DYNAMIC BEHAVIOR OF LIQUID FLOW RATE FROM NOZZLES IN JET SCRUBBERS OF PULP PRODUCTION Sergei V. Aniskin, Doctor of Engineering, Prof.; ORCID: https://orcid.org/0000-0001-8819-381X Victor S. Kurov, Doctor of Engineering, Prof.; ResearcherID: V-7289-2017, ORCID: https://orcid.org/0000-0002-7168-9613 Saint-Petersburg State University of Industrial Technologies and Design, ul. Ivana Chernykh, 4, Saint Petersburg, 198095, Russian Federation; e-mail: asv-47@mail.ru, vskurov18@mail.ru Abstract. It is shown that the modern development of pulp production technology is associated with the development of gas-liquid systems equipment. Such equipment provides the main technological processes of pulp cooking and regeneration of chemical reagents. Furthermore, this equipment, designed to recover chemical reagents and reduce their emissions into the environment, is part of the technological process. The use of scrubbers in pulp production has an advantage over many other industries, since it uses a closed liquor regeneration cycle. Currently, studies of the processes occurring in scrubbers of different types are becoming more numerous and fundamental. This paper is devoted to the development of jet scrubbers. These devices have a number of properties that do not have scrubbers of other types. They do not create resistance to the gas flow in the flue; they have a gravitational property due to ejection. Only jet scrubbers create the necessary conditions for the stability of the gas flow and have a jet effect that allows to significantly increase the efficiency of emissions cleaning. To implement the jet effect and intensify the technological equipment operation it is required to describe transfer processes in jet scrubbers with regard to polydisperse structure of drop flow and features of liquid splitting up into drops by centrifugal-jet nozzles. Scientific works devoted to the problem of realization of the jet effect showed the need to study the dynamics of liquid splitting in centrifugal-jet nozzles, which create a drop-filled jet with a large opening angle. The research purpose is to study the speed of the initial movement of drops in the area immediately after the splitting section of the continuous jet of liquid flowing from the nozzle. A photographic technique with two spark lamps was used for the experiment. At the same time, the distribution of irrigation density was controlled. The results of measuring the distributions of absolute speed of drops and irrigation density were compared with each other and the function of liquid speed distribution in the cross section of the gas-liquid jet of the jet scrubber was determined. Based on the obtained data, a theoretical model was developed to determine the initial speed of drops of centrifugal jet nozzles, an indicator required for the development of new jet scrubbers. The results can be applied to improve the technological processes of pulp production. For citation: Aniskin S.V., Kurov V.S. Dynamic Behavior of Liquid Flow Rate from Nozzles in Jet Scrubbers of Pulp Production. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 2, pp. 180–193. DOI: 10.37482/0536-1036-2021-2-180-193 Keywords: pulp production, gas-liquid equipment, jet scrubber, jet, drops.
Авторы заявляют об отсутствии конфликта интересов |
Электронная подача статей
Журнал награжден «Знаком признания активного поставщика данных 2024 года» ИНДЕКСИРУЕТСЯ В:
|
|
|
|
|
|
|
|
|
|
|
|
|