Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: +7 (8182) 21-61-18 о журнале |
В.Н. Глухих, А.Г. Черных Рубрика: Механическая обработка древесины Скачать статью (pdf, 1MB )УДК674.023DOI:10.37482/0536-1036-2020-5-166-175АннотацияИзвестно, что по некоторым внешним признакам можно определить возраст дерева и условия его произрастания. К этим признакам относятся количество годичных слоев на поперечном срезе ствола дерева, правильность геометрической формы этих слоев. Сбег ствола свидетельствует о том, где выросло это дерево: в загущенном древостое или на открытой местности. Овальная форма сечений ствола свойственна деревьям с несимметричной кроной либо выросшим под наклоном к горизонту. На форму сечений стволов деревьев оказывает влияние мощное внешнее воздействие в виде господствующей ветровой нагрузки. В ответ на внешние воздействия в процессе роста дерева формируется его ствол, крона и соответствующая этому влиянию прочность при статическом изгибе и сжатии вдоль волокон древесины. Результатом взаимодействия этих факторов являются размеры, форма и местоположение ядровой и заболонной зон в стволах деревьев, от которых зависят прочность, плотность, расположение дефектов древесины, что отражается на качестве изделий из нее и процессе их эксплуатации. Единым критерием оценки влияния природных особенностей древесины на качество и прочность деревянных строительных конструкций авторами выбрано формирующееся в процессе роста деревьев начальное напряжение, величина которого может быть объективно оценена по размерам и форме ядровой и заболонной зон сечений стволов. Размеры и форма этих зон могут быть измерены путем сканирования. Схема распиловки бревен должна выбираться с использованием соответствующих компьютерных программ, которые позволяют получать высококачественные пиломатериалы конструкционного назначения. Цель исследования – обосновать связь формы и размеров овальных сечений стволов деревьев с развивающимися в процессе роста начальными напряжениями и прочностью древесины при растяжении, сжатии вдоль волокон и статическом изгибе.Сведения об авторахВ.Н. Глухих, д-р техн. наук, проф.; ResearcherID: AAV-9066-2020,ORCID: https://orcid.org/0000-0002-9912-506X А.Г. Черных, д-р техн. наук, проф.; ResearcherID: AAV-4843-2020, ORCID: https://orcid.org/0000-0001-9805-1428 Санкт-Петербургский государственный архитектурно-строительный университет, 2-я Красноармейская ул., д. 4, Санкт-Петербург, Россия, 190005; е-mail: vnglukhikh@ mail.ru, ag1825831@mail.ru Ключевые словапредел прочности древесины, статистический изгиб, изгибающий момент, деревянные конструкции, напряженно-деформированное состояние, начальное напряжение, смещение центра ядраДля цитированияГлухих В.Н., Черных А.Г. Обоснование овальности формы сечений стволов деревьев при их росте с наклоном // Изв. вузов. Лесн. журн. 2020. № 5. С. 166–175. DOI: 10.37482/0536-1036-2020-5-166-175Литература1. Белов С.В. Ветер – главный фактор, определяющий форму стволов деревьев и их устойчивость // Ботан. журн. СССР. 1934. Т. 13, № 3. С. 3–24. [Belov S.V. Wind is the Main Factor Determining the Shape of Tree Trunks and Their Stability. Botanicheskii Zhurnal, 1934, vol. 13, no. 3, pp. 3–24].2. Глухих В.Н., Акопян А.Л. Начальные напряжения в древесине: моногр. СПб.: СПбГАСУ, 2016. 118 с. [Glukhikh V.N., Akopyan A.L. Initial Stresses in Timber: Monograph. Saint Petersburg, SPbGASU Publ., 2016. 118 p.]. 3. Глухих В.Н., Охлопкова А.Ю. Формирование кармашков в стволах деревьев лиственницы даурской // Изв. вузов. Лесн. журн. 2017. № 5. С. 35–52. [Glukhikh V.N., Okhlopkova A.Yu. Resin Pocket Formation in Tree Stems of Dahurian Larch. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 5, pp. 35–52]. DOI: 10.17238/issn0536-1036.2017.5.35, URL: http://lesnoizhurnal.ru/upload/iblock/212/Glukhikh2.pdf 4. Глухих В.Н., Охлопкова А.Ю. Определение изгибающего момента и прогиба в сечениях пиломатериалов лиственницы даурской от действия начальных напряжений // Изв. вузов. Лесн. журн. 2018. № 1. С. 89–98. [Glukhikh V.N., Okhlopkova A.Yu. Determination of Bending Moment and Deflection in Lumber Cross-Sections of Dahurian Larch from the Action of Initial Stresses. Lesnoy Zhurnal [Russian Forestry Journal], 2018, no. 1, pp. 89–98]. DOI: 10.17238/issn0536-1036.2018.1.89, URL: http://lesnoizhurnal.ru/upload/iblock/051/89_98.pdf 5. Глухих В.Н., Акопян А.Л., Охлопкова А.Ю. Природные особенности древесины: моногр. СПб.: Политех, 2018. 392 с. [Glukhikh V.N., Akopyan A.L., Okhlopkova A.Yu. Natural Features of Wood: Monograph. Saint Petersburg, Polytech Publ., 2018. 392 p.]. 6. Иванов Л.А. О влиянии ветра на рост дерева // Ботан. журн. СССР. 1934. Т. 13, № 3. С. 37–44. [Ivanov L.A. On the Effect of Wind on Tree Growth. Botanicheskii Zhurnal, 1934, vol. 13, no. 3, pp. 37–44]. 7. Кузнецов А.И. Внутренние напряжения в древесине. М.; Л.: Гослесбумиздат, 1950. 59 с. [Kuznetsov A.I. Internal Stresses in Timber. Moscow, Goslesbumizdat Publ., 1950. 59 p.]. 8. Охлопкова А.Ю. Исследование покоробленности пиломатериалов лиственницы даурской от действия начальных напряжений и собственного веса // Системы. Методы. Технология. 2018. № 1. С. 17– 21. [Okhlopkova A.Yu. Research of Dahurian Larch Sawmill Warping Cased by of Initial Stresses and its Own Weight. Sistemy. Metody. Tekhnologii. [Systems. Methods. Technologies.], 2018, no. 1, pp. 17–21]. DOI: 10.18324/2077-5415-2018-1-105-109 9. Раздорский В.Ф. Принципы строения скелета растений // Природа. 1934. № 9. С. 20–29. [Razdorskiy V.F. Principles of the Skeleton Structure of Plants. Priroda, 1934, no. 9, pp. 20–29]. 10. Темнов В.Г. Бионический принцип регулирования параметров напряженнодеформированного состояния конструктивных систем при их проектировании и эксплуатации // Материалы 53-й науч. конф. СПб.: СПбГАСУ, 1996. С. 123–128. [Temnov V.G. The Boinic Principle of Regulating the Parameters of the Stress Strain Behavior of Structural Systems during Their Design and Operation. Proceedings of the 53rd Scientific Conference. Saint Petersburg, SPbGASU Publ., 1996, pp. 123–128]. 11. Alméras T., Clair B. Critical Review on the Mechanisms of Maturation Stress Generation in Trees. Journal of The Royal Society Interface, 2016, vol. 13, iss. 122, art. 20160550. DOI: 10.1098/rsif.2016.0550 12. Banks C.H. Sawing and Stacking. Timber to Reduce Warp. Timber Technologie, 1966, no. 3, pp. 36–39. 13. Bonnesoeur V., Constant T., Moulia B., Fournier M. Forest Trees Filter Chronic Wind-Signals to Acclimate to High Winds. New Phytologist, 2016, vol. 210, iss. 3, pp. 850–860. DOI: 10.1111/nph.13836 14. Cassens D.L., Serrano J.R. Growth Stress in Hardwood Timber. Proceedings of the 14th Central Hardwoods Forest Conference, Wooster, OH, March 16–19, 2004. Wooster, USDA, 2004, pp. 106–115. 15. Coutand C., Pot G., Badel E. Mechanosensing Is Involved in the Regulation of Autostress Levels in Tension Wood. Trees, 2014, vol. 28, pp. 687–697. DOI: 10.1007/s00468-014-0981-6 16. Fourcaud T., Blaise F., Lac P., Castéra P., de Reffye P. Numerical Modelling of Shape Regulation and Growth Stresses in Trees. Trees, 2003, vol. 17, pp. 31–39. DOI: 10.1007/s00468-002-0203-5 17. Kübler H. Studien über Wachstumsspannungen des Holzes–Erste Mitteilung: Die Ursache der Wachstumsspannungen und die Spannungen quer zur Faserrichtung. Holz als Roh- und Werkstoff [European Journal of Wood and Wood Products], 1959, vol. 17, pp. 1–9. DOI: 10.1007/BF02608827 18. Nicholson J.E. A Rapid Method for Estimating Longitudinal Growth Stresses in Logs. Wood Science and Technology, 1971, vol. 5, iss. 1, pp. 40–48. DOI: 10.1007/BF00363119 19. Okura S., Ozawa K., Takagaki N. On the Twisting Warp of Wood. Part IV. Twisting Warp of Boards in Relation to Fiber Directions. Mokuzai Gakkaishi, 1963, no. 9(4), pp. 121–124. 20. Roignant J., Badel É., Leblanc-Fournier N., Brunel-Michac N., Ruelle J., Moulia B., Decourteix M. Feeling Stretched or Compressed? The Multiple Mechanosensitive Responses of Wood Formation to Bending. Annals of Botany, 2018, vol. 121, iss. 6, pp. 1151–1161. DOI: 10.1093/aob/mcx211 21. Stevens W.C., Mech E. Twist in Sitka Spruce. Timber Trades Journal, 1960, no. 2. Ссылка на английскую версию:Reasoning of Tree Cross Sections Oval Shaping while Growing with an Inclination
REASONING OF TREE CROSS SECTIONS OVAL SHAPING WHILE GROWING WITH AN INCLINATION V.N. Glukhikh, Doctor of Engineering, Prof.; ResearcherID: AAV-9066-2020, ORCID: https://orcid.org/0000-0002-9912-506X A.G. Chernykh, Doctor of Engineering, Prof.; ResearcherID: AAV-4843-2020, ORCID: https://orcid.org/0000-0002-9912-506X Saint Petersburg State University of Architecture and Civil Engineering, 2-ya Krasnoarmeyskaya ul., 4, Saint Petersburg, 190005, Russian Federation; e-mail: vnglukhikh@mail.ru, ag1825831@mail.ru It is known that it is possible to determine the age of a tree and the conditions for its growth by some external features. These features include the number of annual layers on the tree trunk cross section, the correct geometric shape of these layers. The stem taper indicates where this tree grew: in an overstocked stand or in open areas. The oval shape of the cross sections of the trunk is common to the trees with irregular crown or grown inclined to the horizon. A powerful external action of a prevailing wind load influences on the cross sections shaping of tree trunks. Trunk, crown and corresponding cross-breaking strength and compression resistance along the wood fibers of a tree are formed in response to all external influences during its growth. The collaborative effect of these factors is the size, shape and location of the core and sapwood zones in the tree trunks, on which the strength, density, and location of wood defects are dependent, and which affect the quality of wood products in-service. The authors chose the initial stress formed during the tree growth as a uniform criterion for assessing the influence of the natural features of wood on the quality and strength of wooden building structures. The value of which can be fairly estimated by the size and shape of the core and sapwood zones of the tree trunks cross sections. The size and shape of these zones can be measured by scanning. The log sawing pattern should be selected using appropriate computer software that allow obtaining the high-quality sawn timber for the construction purposes. The research purpose is to develop a method for determining the size and shape of the core and sapwood zones of the tree trunk sections that have a natural curvature and grow vertically or with an inclination to the horizon; and what is more, to substantiate the connection between the shape and size of the tree trunk oval sections with the initial stresses developing during growth and the wood strength under tension, compression along the fibers and static bending. For citation: Glukhikh V.N., Chernykh A.G. Reasoning of Tree Cross Sections Oval Shaping while Growing with an Inclination. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 5, pp. 166–175. DOI: 10.37482/0536-1036-2020-5-166-175 Keywords: wood ultimate strength, statistical bending, bending moment, timber structures, stress strain behavior, primary stress, core shifting. Поступила 11.09.19 / Received on September 11, 2019 |
Электронная подача статей
Журнал награжден «Знаком признания активного поставщика данных 2024 года» ИНДЕКСИРУЕТСЯ В:
|
|
|
|
|
|
|
|
|
|
|
|
|