Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: +7 (8182) 21-61-18 о журнале |
Ю.Л. Юрьев Рубрика: Химическая переработка древесины Скачать статью (pdf, 0.5MB )УДК630*867.5DOI:10.37482/0536-1036-2020-3-169-175АннотацияОдним из перспективных вариантов переработки лиственной древесины невысокого качества считается ее пиролиз на установках низкой экологической опасности, расположенных рядом с источником сырья. В дальнейшем возможна переработка древесного угля на активные угли различного назначения. Цель исследования – оценить пригодность активного угля, полученного из тонкомерной березовой древесины, для доочистки питьевой воды, а также показать возможность его регенерации. В качестве фильтрующего материала в колонках использовался промышленный активный уголь марки БАУ-А и уголь древесный активный дробленый, полученный путем паровой активации угля из тонкомерной березовой древесины во вращающейся печи с z-образной вставкой. Воду в колонки с активным углем подавали так, чтобы обеспечить продолжительность контакта воды с углем в течение 8, 4 и 2 мин. Через 3 месяца непрерывной работы все угольные фильтры с продолжительностью контакта 8 мин сохраняли сорбционную активность, а фильтры с продолжительностью контакта 4 мин были отработаны на 80 %. Далее испытания по доочистке воды проводились на регенерированных углях. Установлено, что доочистка с применением березового активного угля снижает перманганатную окисляемость воды примерно на 1 мг О2/дм3. Наиболее приемлемой является продолжительность контакта угольной загрузки с водой, равная 4 мин, уголь после регенерации пригоден к повторному использованию. Показано, что уголь, полученный из тонкомерной березовой древесины при помощи активации в печи с z-образной вставкой, снижает окисляемость воды так же, как и промышленный уголь марки БАУ-А. При этом использование более дешевого сырья (тонкомерной березовой древесины) и проведение активации угля с низким удельным расходом водяного пара (за счет организации пульсирующего давления) уменьшает затраты на изготовление фильтрующего материала и доочистку питьевой воды.Сведения об авторахЮ.Л. Юрьев, д-р техн. наук, проф.; ResearcherID: AAA-8591-2020,ORCID: https://orcid.org/0000-0002-1187-7401 Уральский государственный лесотехнический университет, ул. Сибирский тракт, д. 37, г. Екатеринбург, Россия, 620100; e-mail: charekat@mail.ru Ключевые словадоочистка питьевой воды, окисляемость, сорбция, активный уголь, тонкомерная березовая древесинаДля цитированияЮрьев Ю.Л. Получение и использование березового активного угля для доочистки питьевой воды // Изв. вузов. Лесн. журн. 2020. № 3. С. 169–175. DOI: 10.37482/0536-1036-2020-3-169-175Литература1. Ким А.Н., Романова Ю.В., Грун Н.А. Повышение качества питьевой воды путем совершенствования сорбционной доочистки водопроводной воды // Перспективы развития строительного комплекса. 2015. № S1. С. 316–326. [Kim A.N., Romanova Yu.V., Grun N.A. Improving the Quality of Drinking Water through Development of Sorption Post-Treatment of Tap Water. Perspektivy razvitiya stroitel’nogo kompleksa, 2015, no. S1, pp. 316–326].2. Клушин В.Н., Хомутов А.Н., Статиров М.М., Киреев А.С., Мухин В.М. Новые активные угли отечественного производства для водоподготовки и доочистки питьевой воды // Хим. пром-сть сегодня. 2008. № 5. С. 31–41. [Klushin V.N., Khomutov A.N., Statirov M. M., Kireev A.S., Mukhin V.M. New Activated Carbons of Domestic Production for Water Treatment and Drinking Water Post-Treatment. Khimicheskaya Promyshlennost’ segodnya, 2008, no. 5, pp. 31–41]. 3. Королькова С.В. Эколого-гигиеническое обоснование применения и оптимизация автономных адсорбционных устройств для доочистки питьевой воды: дис. … канд. техн. наук. СПб., 2000. 226 c. [Korol’kova S.V. Environmental and Health Substantiation of Use and Optimization of Autonomous Adsorption Devices for Drinking Water Post-Treatment: Cand. Eng. Sci. Diss. Saint-Petersburg, 2000. 226 p.]. 4. Макаревич Н.А., Богданович Н.И. Теоретические основы адсорбции. Архангельск: САФУ, 2015. 362 с. [Makarevich N.A., Bogdanovich N.I. The Theoretical Basis of Adsorption. Arkhangelsk, NArFU Publ., 2015. 362 p.]. 5. Патент № 76644 Российская Федерация, МПК C10B 1/04. Реторта / Самойленко С.А., Юрьев Ю.Л., Мехренцев А.В., Жевлаков А.Н. 2008. [Samoylenko S.A., Yur’yev Yu.L., Mekhrentsev A.V., Zhevlakov A.N. Retort. Patent RF no. RU 76644 U1, 2008]. 6. Патент № 2027735 Российская Федерация, МПК C10B 1/04. Установка для производства древесного угля / Богданович Н.И., Гольверк С.В. 1992. [Bogdanovich N.I, Gol’verk S.V. Charcoal-Producing Plant. Patent RF no. RU 2027735 C1, 1992]. 7. Патент № 2051097 Российская Федерация, МПК C01B 31/10. Способ активации карбонизованных материалов / Панюта С.А., Юрьев Ю.Л., Стахровская Т.Е., Шишко И.И. 1995. [Panjuta S.A., Jur’ev Ju.L., Stakhrovskaja T.E., Shishko I.I. Method of Activation of Carbonized Materials. Patent RF no. RU 2051097 C1, 1995]. 8. Первов А.Г. Как выбирать фильтры для очистки воды из водопровода // Водоочистка. Водоподготовка. Водоснабжение. 2014. № 1(73). С. 42–45. [Pervov A.G. How to Choose Filters for Tap Water. Vodoochistka. Vodopodgotovka. Vodosnabzheniye, 2014, no. 1(73), pp. 42–45]. 9. Шишкин В.В. Формирование качества питьевой воды путем адсорбционной доочистки от хлорфенола и хлороформа: автореф. дис. … канд. техн. наук. Кемерово, 2009. 22 c. [Shishkin V.V. The Formation of the Drinking Water Quality by Adsorptive Post-Treatment from Chlorophenol and Chloroform: Cand. Eng. Sci. Diss. Abs. Kemerovo, 2009. 22 p.]. 10. Юрьев Ю.Л. Свойства угля из тонкомерной березовой древесины // Вестн. Перм. нац. исслед. политехн. ун-та. Химическая технология и биотехнология. 2018. № 1. С. 105–112. [Yuriev Yu.L. Charcoal Properties of Small Size Birch Wood. Vestnik PNIPU. Khimicheskaya tekhnologiya i biotekhnologiya [PNRPU Bulletin. Chemical Technology and Biotechnology], 2018, no 1, pp. 105–112]. DOI: 10.15593/2224-9400/2018.1.09 11. Юрьев Ю.Л., Гиндулин И.К., Дроздова Н.А. Варианты переработки низкосортной древесины на углеродные материалы // Изв. вузов. Лесн. журн. 2017. № 5. С. 139–149. [Yur’ev Yu.L., Gindulin I.K., Drozdova N.A. Options of Low-Grade Wood Processing into Carbon-Base Materials. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 5, pp. 139–149]. DOI: 10.17238/issn0536-1036.2017.5.139, URL: http://lesnoizhurnal.ru/upload/iblock/f01/1_YUrev.pdf 12. Юрьев Ю.Л., Дроздова Н.А., Панова Т.М. Доочистка артезианской воды с применением модифицированных древесных углей // Вестн. Казан. технол. ун-та. 2013. Т. 16, № 19. С. 85–86. [Yur’ev Yu.L., Drozdova N.A., Panova T.M. Post-Treatment of Artesian Water Using Modified Charcoals. Vestnik Kazanskogo tekhnologicheskogo universiteta [Herald of Kazan Technological University], 2013. T. 16. No 19. S. 85–86]. 13. Юрьев Ю.Л., Штеба Т.В. Исследование закономерностей активации углеродной нанопористой матрицы водяным паром // Вестн. Технол. ун-та. 2015. Т. 18, № 4. С. 194–197. [Yur’ev Yu.L., Shteba T.V. Study of the patterns of activation of carbon nanoporic matrix water vapor. Vestnik tekhnologicheskogo universiteta [Herald of Kazan Technological University], 2015, vol. 18, no. 4, pp. 194–197]. 14. Choi Y., Lee J. Filter System. Patent US no. US 9889408 B2, 2018. 15. Elliott A.M. Manufacture of Charcoal. Patent US no. US 8202400 B2, 2012. 16. Olander М., Piers P., Beierwaltes W.Т., Gaspard J.G. Portable Biochar Kiln. Patent US no. US 10385274 B2, 2019. 17. Roskill: Activated Carbon Could See World Consumption Double in Four Years. Roskill Information Services, 2013. Available at: https://www.prnewswire.com/news-releases/roskill-activated-carbon-could-see-world-consumption-double.... html (accessed 09.12.19). 18. Shearer D., Gaunt J., Peacocke V.C. Biochar. Patent US no. US 8747797 B2, 2014. 19. Takeda H., Itakura M., Ito M., Yoshinobu H. Water Filter Cartridge and Water Purifier. Patent US no. US 10023476 B2, 2018. 20. United Nations Commodity Trade Statistics Database. Available at: https://com trade.un.org/db/default.aspx (accessed 09.12.19). 21. Yokoyama K., Fujiwara M., Ueda S., Arai Y., Kudo T., Miyahara S. Carbonizing Apparatus, Carbonizing System and Carbonizing Method. Patent US no. US 20080142354 A1, 2008. Ссылка на английскую версию:Production and Use of Birch Activated Carbon for Drinking Water Post-Treatment
PRODUCTION AND USE OF BIRCH ACTIVATED CARBON FOR DRINKING WATER POST-TREATMENT Yu.L. Yur’ev, Doctor of Engineering, Prof., Head of Department; ResearcherID: AAA-8591-2020, ORCID: https://orcid.org/0000-0002-1187-7401 Ural State Forest Engineering University, ul. Sibirskiy trakt, 37, Yekaterinburg, 620100, Russian Federation; e-mail: charekat@mail.ru Pyrolysis of low-quality deciduous wood in the plants with low environmental hazard, located near the source of raw materials is one of the promising options for its processing. In the future, it will be possible to convert such charcoal into activated carbons for various purposes. The research purpose is to evaluate the usefulness of activated carbon derived from smalldiameter birch wood for the drinking water post-treatment, as well as to show the possibility of its regeneration. Commercial activated carbon BAU-A and crushed activated charcoal, obtained by steam activation of coal made of small-diameter birch wood in a rotary kiln with a z-shaped insert, were used as a filter medium in the columns. Water was supplied to the columns with activated carbon in such a way as to ensure the contact duration of water with coal for 8, 4, and 2 min. After three months of continuous operation, all carbon filters with 8-minute contact time retained sorption activity, and filters with 4-minute contact time were used for 80 %. Further on, water post-treatment tests were carried out with recovered carbons. It is found that post-treatment using birch activated carbon reduces the water permanganate oxidation by about 1 mg O2/dm3. The most complementary preferred contact time of coal charge with water is 4 min. The coal after regeneration is recyclable. It is shown that coal made of small-diameter birch wood using activation in a kiln with a z-shaped insert reduces the water oxidation in the same way as commercial coal BAU-A. Herewith, the use of cheaper raw materials (fine birch wood) and coal activation with low specific consumption of water steam (due to the organization of oscillating pressure) cut costs for the filter medium production and drinking water post-treatment. For citation: Yur’ev Yu.L. Production and Use of Birch Activated Carbon for Drinking Water Post-Treatment. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 3, pp. 169–175. DOI: 10.37482/0536-1036-2020-3-169-175 Keywords: drinking water post-treatment, oxidability, sorption, activated carbon, smalldiameter birch wood. Поступила 09.12.19 / Received on December 9, 2019 |
Электронная подача статей
Журнал награжден «Знаком признания активного поставщика данных 2024 года» ИНДЕКСИРУЕТСЯ В:
|
|
|
|
|
|
|
|
|
|
|
|
|