Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: +7 (8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

о журнале

Классификация и оценка состояния смешанных древостоев по аэроизображениям сверхвысокого пространственного разрешения

Версия для печати

Е.В. Дмитриев, В.А. Козуб, П.Г. Мельник, А.А. Соколов, А.Н. Сафонова

Рубрика: Лесное хозяйство

Скачать статью (pdf, 2.8MB )

УДК

528.854 (630.4)

DOI:

10.17238/issn0536-1036.2019.5.9

Аннотация

На сегодняшний день инвазия уссурийским полиграфом признана одним из основных факторов широкомасштабного усыхания сибирских лесов. Появление этого нового организма в пихтарниках серьезно ухудшило их состояние и привело к разнообразным экологическим эффектам в таежных экосистемах. В очагах массового размножения происходит снижение естественного биологического разнообразия, продуктивности лесов, изменение состава и структуры древесного и подчиненных ярусов. В данной работе предлагается методика определения степени поражения древостоев по цветным авиационным изображениям сверхвысокого разрешения (5…10 см на пиксель) с использованием методов машинного обучения. Методика включает в себя этапы предварительной обработки, сегментации крон отдельных деревьев, обучаемой классификации и оценки степени поражения в соответствии со стандартными категориями. Для отработки методики использовались изображения тестовых территорий заповедника «Столбы» (Красноярский край), полученные с помощью аппаратуры, установленной на беспилотные летательные аппараты DJI Phantom 3 Pro и Yuneec Typhoon H в мае 2016 г. Для этапа построения обучающего ансамбля предложена методика фильтрации обучающих данных, которая позволила повысить точность расчетов на этапе классификации. Приведено обоснование разделения трех основных классов объектов на подклассы с использованием кластерного анализа. Наличие подклассов обусловлено наличием различных пород деревьев на тестовом участке. Проведено сравнение эффективности различных методов обучаемой классификации, используемых для решения данной задачи. Показано, что все рассмотренные методы позволяют достичь предельно высокой точности – почти 95 %. Расчет значений параметра каппа показывает, что классификации, проведенные с помощью всех рассмотренных методов, имеют отличное соответствие экспертным данным. Проведен анализ устойчивости обучения. Оценки полной вероятности ошибки, полученные методами кросс-валидации и переклассификации, отличаются менее чем на 0,1 %, что свидетельствует об отсутствии проблемы переобучения. Анализ соотношения точности и скорости обработки показал, что наиболее целесообразно использовать нормальный байесовский классификатор. Высокая точность классификации позволяет получить оценки 6 степеней поражения древостоев на тестовом участке. Полученные результаты в дальнейшем могут быть использованы для работы региональных служб по управлению лесным хозяйством.

Сведения об авторах

Е.В. Дмитриев1,2, канд. физ.-мат. наук, ст. науч. сотр.; ResearcherID: E-4794-2014, ORCID: 0000-0001-5363-3934
В.А. Козуб2, соискатель
П.Г. Мельник3,4, канд. с.-х. наук, доц.; ResearcherID: E-7644-2014
А.А. Соколов5, канд. физ.-мат. наук; ORCID:0000-0001-9236-5864
А.Н. Сафонова6,7, аспирант; ResearcherID: F-6811-2019, ORCID: 0000-0002-3290-2717
1Институт вычислительной математики РАН, ул. Губкина, д. 8, Москва, Россия, 119333; e-mail: yegor@mail.ru
2Московский физико-технический институт (национальный исследовательский университет), Институтский пер., д. 9, г. Долгопрудный, Московская область, Россия, 141701; e-mail: postbox-kozub@yandex.ru
3Московский государственный технический университет им. Н.Э. Баумана (Мытищинский филиал), 1-я Институтская ул., д. 1, г. Мытищи, Московская область, Россия, 141005; e-mail: melnik_petr@bk.ru
4Институт лесоведения Российской академии наук, ул. Советская, д. 21, с. Успенское, Московская область, Россия, 143030; e-mail: melnik_petr@bk.ru
5Laboratoire de Physico-Chimie de l’Atmosphère Université du Littoral Côte d’Opale, Maison de la Recherche en Environnement Industriel 2, 189A, Avenue Maurice Schumann, 59140 Dunkerque, France; e-mail: anton.sokolov@univ-littoral.fr
6Сибирский федеральный университет, пр. Свободный, д. 79, г. Красноярск, Россия, 660041; e-mail: safonova.nastya1@gmail.com
7Soft Computing and Intelligent Information Systems research group, University of Granada, E-18071 Granada, Spain; e-mail: safonova.nastya1@gmail.com

Ключевые слова

дистанционное зондирование, изображения сверхвысокого разрешения, лес, оценка состояния лесов, деградация лесов, стволовые вредители, распознавание образов, тематическая обработка изображений

Для цитирования

Дмитриев Е.В., Козуб В.А., Мельник П.Г., Соколов А.А., Сафонова А.Н. Классификация и оценка состояния смешанных древостоев по аэроизображениям сверхвысокого пространственного разрешения // Лесн. журн. 2019. № 5. С. 9–24. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2019.5.9
Финансирование: Работа выполнена при финансовой поддержке РФФИ, проект № 19-01-00215 «Исследование оперативных возможностей гиперспектральных технологий ДЗЗ для решения региональных задач с использованием действующих и перспективных ГСК космического базирования».

* Статья опубликована в рамках реализации программы развития научных журналов в 2019 г., по материалам XIX Международной конференции молодых ученых «Леса Евразии – Южный Урал» (25–30 августа 2019 г., г. Челябинск).

Литература

  1. Акулов Е.Н., Кулинич О.А., Пономарев В.Л. Полиграф уссурийский – новый инвазийный вредитель хвойных лесов России // Защита и карантин растений. 2011. № 7. С. 34–36. [Akulov E.N., Kulinich O.A., Ponomarev V.L. Poly-graphus proximus is a New Invasive Pest of Softwood Forests in Russia. Zashchita i karantin rasteniy, 2011, no. 7, pp. 34–36].

  2. Гниненко Ю.И., Клюкин М.С. Уссурийский короед на территории России // Защита и карантин растений. 2011. № 11. С. 32–34. [Gninenko Yu.I., Klyukin M.S. Polygraphus proximus in the Territory of Russia. Zashchita i karantin rasteniy, 2011, no. 11, pp. 32–34].

  3. Керчев И.А. Экология полиграфа уссурийского Polygraphus proximus Blandford (Coleoptera; Curculionidae, Scolytinae) в Западно-Сибирском регионе инвазии // Российский журнал биологических инвазий. 2014. № 2. С. 80–94. [Kerchev I.A. Ecology of Four Eyed Fir Bark Beetle Polygraphus proximus Blandford (Coleoptera; Curculionidae, Scolytinae) in the West-Siberian Region of Invasion. Rossiyskiy zhurnal biologicheskikh invaziy [Russian Journal of Biological Invasions], 2014, no. 2, pp. 80–94].

  4. Кобельков М.Е., Чуканов М.А., Хотин Д.В. Категории состояния основных лесообразующих пород Московской области. М., 2000. 40 с. [Kobel’kov M.E., Chukanov M.A., Khotin D.V. Status Categories of the Main Forest Forming Species of the Moscow Region. Мoscow, 2000. 40 p.].

  5. Кривец С.А., Керчев И.А., Бисирова Э.М., Пашенова Н.В., Демидко Д.А., Петько В.М., Баранчиков Ю.Н. Уссурийский полиграф в лесах Сибири (распространение, биология, экология, выявление и обследование поврежденных насаждений): метод. пособие. Томск; Красноярск, 2015. 48 c. [Krivets S.A., Kerchev I.A., Bisirova E.M., Pashenova N.V., Demidko D.A., Pet’ko V.M., Baranchikov Yu.N. Four-Eyed Fir Bark Beetle in Siberian Forests (Distribution, Biology, Ecology, Detection and Survey of Damaged Stands): Study Guide. Tomsk, 2015. 48 p.].

  6. Криволуцкая Г.О. Семейство Scolytidae (Ipidae) – Короеды / Определитель насекомых Дальнего Востока России. Т. 3, ч. 3. Владивосток: Дальнаука, 1996. С. 312–317. [Krivolutskaya G.O. Family Scolytidae, Bark Beetles. Key to the Insects of the Russian Far East. Vol. 3, part 3. Vladivostok, Dal’nauka Publ., 1996, pp. 312–317].

  7. Мандельштам М.Ю., Поповичев Б.Г. Аннотированный список видов короедов (Coleoptera, Scolytidae) Ленинградской области // Энтомологическое обозрение, 2000. Т. 79, вып. 3. С. 599–618. [Mandel’shtam M.Yu., Popovichev B.G. Annotated List of Bark Beetles (Coleoptera, Scolytidae) of Leningrad Province. Entomologicheskoye obozreniye [Entomological Review], 2000, vol. 79, iss. 3, pp. 599–618].

  8. Чилахсаева Е.А. Первая находка Polygraphus proximus Blandford,1894 (Coleoptera, Scolytidae) в Московской области // Бюлл. Московского общества испытателей природы. Отдел биологический. 2008. Т. 113, вып. 6. С. 39–42. [Chilakhsaeva E.A. First Record of Polygraphus proximus (Coleoptera: Scolytidae) in Moscow Province. Byulleten’ Moskovskogo obshchestva ispytateley prirody. Otdel biologicheskiy [Bulletin of Moscow Society of Naturalists. Biological Series], 2008, vol. 113, iss. 6, pp. 39–42].

  9. Barbakh W., Fyfe C. Online clustering algorithms. International Journal of Neural Systems, 2008, vol. 18, no. 3, pp. 1–10.

  10. Dietterich T.G., Bakiri G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research, 1995, vol. 2, pp. 263–286.

  11. Duda R.O., Hart P.E., Stork D.G. Pattern Classification. 2nd Edition. New York, NY, Wiley-Interscience, 2000. 688 p.

  12. Freidman J.H., Bentley J.L., Finkel R.A. An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Transactions on Mathematical Software, 1977, vol. 3, iss. 3, pp. 209–226. DOI: 10.1145/355744.355745

  13. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. New York, NY, Springer, 2001. 536 p. DOI: 10.1007/978-0-387-21606-5

  14. Jing L., Hua B., Noland T., Li J. An Individual Tree Crown Delineation Method Based on Multi-Scale Segmentation of Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, vol. 70, pp. 88–98.

  15. MacQueen J.B. Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1: Statistics. Berkeley, CA, University of California Press, 1967, pp. 281–297.

  16. Niijima Y. Revision und Neubeschreibung der Polygraphus-Arten (Coleoptera, Ipidae) in Japan. Insecta Matsumurana, 1941, vol. 15(4), pp. 123–135.

  17. Nobuchi A. Bark-Beetles Injurious to Pine in Japan. Bulletin of the Government Forest Experiment Station, 1966, vol. 185, pp. 1–49.

  18. Safonova A., Tabik S., Alcaraz-Segura D., Rubtsov A., Maglinets Y., Herrera F. Detection of Fir Trees (Abies sibirica) Damaged by the Bark Beetle in Unmanned Aerial Vehicle Images with Deep Learning. Remote Sensing, 2019, vol. 11(6), art. 643, pp. 1–19. DOI: 10.3390/rs11060643


CLASSIFICATION AND ASSESSMENT OF THE STATE OF MIXED FORESTS FROM VERY HIGH SPATIAL RESOLUTION AIRBORNE IMAGES*

E.V. Dmitriev1,2, Candidate of Physics and Mathematics, Senior Research Scientist;  ResearcherID: E-4794-2014, ORCID: 0000-0001-5363-3934
V.A. Kozub2, External Student
P.G. Melnik3,4, Candidate of Agriculture, Assoc. Prof.; ResearcherID: E-7644-2014
A.A. Sokolov5, Candidate of Physics and Mathematics; ORCID:0000-0001-9236-5864
A.N. Safonova6,7, PhD Student; ResearcherID: F-6811-2019, ORCID: 0000-0002-3290-2717
1Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, ul. Gubkina, 8, Moscow, 119333, Russian Federation; e-mail: yegor@mail.ru
2Moscow Institute of Physics and Technology (National Research University), per. Institutskiy, 9, Dolgoprudny, Moscow Region, 141701, Russian Federation; e-mail: postbox-kozub@yandex.ru
3Mytishchi Branch of Bauman Moscow State Technical University, ul. 1-ya Institutskaya, 1, Mytishchi-5, Moscow Region, 141005, Russian Federation; e-mail: melnik_petr@bk.ru
4Institute of Fоrеst Science, Russian Academy of Sciences, ul. Sovetskaya, 21, Uspenskoe, Moscow Region, 143030, Russian Federation; e-mail: melnik_petr@bk.ru
5Laboratoire de Physico-Chimie de l’Atmosphère Université du Littoral Côte d’Opale, Maison de la Recherche en Environnement Industriel 2, 189A, Avenue Maurice Schumann, 59140 Dunkerque, France; e-mail: anton.sokolov@univ-littoral.fr
6Siberian Federal University, prosp. Svobodny, 79, Krasnoyarsk, 660041, Russian Federation; e-mail: safonova.nastya1@gmail.com
7Soft Computing and Intelligent Information Systems research group, University of Granada, E-18071 Granada, Spain; e-mail: safonova.nastya1@gmail.com

At present, the invasion by Ussuri polygraphus (Polygraphus proximus Blandf) is considered as one of the main factors of large-scale drying of Siberian forests. The appearance of this new organism in fir trees has led to seriously worsening their condition and a variety of ecological effects in taiga ecosystems. The strong decrease of natural biological diversity, forest productivity, changes in the composition and structure of tree and subordinate layers may occur in the centers of mass reproduction. In this paper, we propose a method for determination of category of forest damage from very high spatial resolution color airborne images (5–10 cm per pixel) using machine learning methods. The method includes the stages of preprocessing, segmentation of crowns of individual trees, the classification and assessment of the forest damage in accordance with conventional standards. The images of several test plots of Stolby Nature Reserve (Krasnoyarsk Territory), obtained with the help of equipment installed on unmanned aerial vehicles DJI Phantom 3 Pro and Yuneec Typhoon H in May 2016, were used for testing the method proposed. The filtering method proposed for the stage of constructing a training set made it possible to increase the accuracy at the classification stage. The substantiation of division of the three main classes of objects into subclasses using cluster analysis is given. The presence of subclasses is caused by presence of various tree species in the test plot. A comparison of the efficiency of various supervised classification methods used for solving this problem is performed. It is shown that all the considered methods allow us to achieve a sufficiently high accuracy, about 95%. The calculation of the Cohen’s kappa coefficient shows that the classifications carried out with the help of all the considered methods have excellent agreement with the expert data. The analysis of the stability of training is carried out. Estimates of the total probability of error obtained by methods of cross-validation and resubstitution differ by less than 0.1%, which indicates the absence of the problem of overtraining. The joint analysis of accuracy and processing speed has shown that it is most appropriate to use the normal Bayesian classifier. High classification accuracy allows us to obtain estimates of 6 categories of forest damage in the test plot. The results obtained can be potentially used by regional forest management services.

For citation: Dmitriev E.V., Kozub V.A., Melnik P.G., Sokolov A.A., Safonova A.N. Classification and Assessment of the State of Mixed Forests from Very High Spatial Resolution Airborne Images. Lesnoy Zhurnal [Forestry Journal], 2019, no. 5, pp. 9–24. DOI: 10.17238/issn0536-1036.2019.5.9
Funding: the work is supported by RFBR, project № 19-01-00215 «Investigation of operative opportunities of hyper-spectral technologies of remote sensing of the Earth to solve regional problems using updated hyper-spectral cameras from space».

⃰ The article is published within the framework of implementation of the scientific journals development program in 2019, based on proceedings of XIX International conference of the young scholars “Forests of Euro-Asia – The Southern Ural” (August 25–30, 2019. Chelyabinsk).

Keywords: remote sensing, very high resolution images, forests, forest state assessment, forest degradation, stem pests, pattern recognition, thematic image processing.

Поступила 30.07.19 / Received on July 30, 2019



Электронная подача статей



ADP_cert_2024.png Журнал награжден «Знаком признания активного поставщика данных 2024 года»

ИНДЕКСИРУЕТСЯ В: 

scopus.jpg

DOAJ_logo-colour.png

logotype.png

Логотип.png