Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: +7 (8182) 21-61-18 о журнале |
Ю.В. Немировский, А.И. Болтаев Рубрика: Механическая обработка древесины Скачать статью (pdf, 1.2MB )УДК674.038.3DOI:10.17238/issn0536-1036.2018.4.118АннотацияПриводится решение проблемы определения напряженно-деформированного состояния гибридных (состоящих из разных пород древесины) деревянных брусьев. Поперечное сечение такого бруса – слоистое. Каждый его слой может изменять форму по-перечного сечения в широких пределах, т. е. необходимо учитывать физическую нелинейность диаграмм деформирования слоев, а также разную их сопротивляемость растяжению и сжатию. В общем случае брус испытывает прямой поперечный изгиб с растяжением-сжатием. Сравниваются диаграммы деформирования для 6 пород древесины на растяжение-сжатие вдоль волокон. Полученные результаты показывают, что разные породы древесины совершенно по-разному сопротивляются растяжению и сжатию: одна порода лучше работает на растяжение (может испытывать большие предельные напряжения и деформации), другая – на сжатие. При одном уровне напряжений графики деформирования различных пород расположены близко друг к другу, при других – значительно расходятся. Данные расчетов гибридных брусьев демонстрируют значительные особенности деформирования и разрушения гибридных физически нелинейных брусьев по сравнению с однородными (состоящими из одной породы), материал которых подчиняется закону Гука. К этим особенностям относятся: значительное изменение величины предельной нагрузки и максимального прогиба при варьировании пород слоев; возможность возникновения скрытых механизмов разрушения, когда предельные продольные деформации достигаются во внутренних слоях бруса. Эти особенности деформирования и разрушения гибридных деревянных конструкций необходимо учитывать в процессе их производства.Сведения об авторахЮ.В. Немировский, д-р физ.-мат. наук, проф.А.И. Болтаев, асп. Новосибирский государственный архитектурно-строительный университет, ул. Ленинградская, д. 113, г. Новосибирск, Россия, 630008; е-mail: nemirov@itam.nsc.ru, boltaev_artem@mail.ru Ключевые словаслоистые конструкции, физическая нелинейность, гибридное проектирование, механизмы разрушенияДля цитированияНемировский Ю.В., Болтаев А.И. Особенности деформирования и разрушения гибридных брусьев из древесины // Лесн. журн. 2018. № 4. С. 118–131. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2018.4.118Литература1. Арленинов Д.К., Буслаев Ю.Н., Игнатьев В.П., Романов П.Г., Чахов Д.К. Конструкции из дерева и пластмасс. М.: Изд-во Ассоц. строит. вузов, 2002. 280 с.2. Боровиков А.М., Уголев Б.Н. Справочник по древесине. М.: Лесн. пром-сть, 1989. 296 с. 3. Быков В.В. Экспериментальные исследования прочности и деформативности древесины сибирской лиственницы при сжатии и растяжении вдоль волокон с учетом длительного действия нагрузки // Строительство. 1967. № 8. С. 3–8. (Изв. высш. учеб. заведений). 4. Геммерлинг А.В. Расчет стержневых систем. М.: Стройиздат, 1974. 208 с. 5. Григолюк Э.И., Шалашилин В.И. Проблемы нелинейного деформирования: Метод продолжения решения по параметру в нелинейных задачах механики твердого деформируемого тела. М.: Наука, 1988. 232 с. 6. Исследования прочности и деформативности древесины: сб. ст. / под ред. Г.Г. Карлсена. М.: Госстройиздат, 1956. 172 с. 7. Квасников Е.Н. Вопросы длительного сопротивления древесины. Л.: Строй-издат, 1972. 96 с. 8. Коченов В.М. Несущая способность элементов и соединений деревянных конструкций. М.: Госстройиздат, 1953. 320 с. 9. Немировский Ю.В. Метод расчета композитных стержневых систем из разномодульных материалов // Фундаментальные и прикладные проблемы современной механики: материалы V Всерос. науч. конф. (Томск, 3–5 нояб.). Томск: Изд-во ТГУ, 2006. С. 288–290. 10. Немировский Ю.В., Болтаев А.И. Метод расчета деревянных стропильных покрытий зданий. Сообщ. 1. Моделирование и общие закономерности // Строитель-ство. 2014. № 3. С. 5–13. (Изв. высш. учеб. заведений). 11. Немировский Ю.В., Болтаев А.И. Особенности деформирования и разрушения деревянных клееных многопролетных балок. Сообщ. 1 // Строительство. 2016. № 6. С. 116–126. (Изв. высш. учеб. заведений). 12. Немировский Ю.В., Болтаев А.И. Особенности расчета деревожелезобетонного балочного моста // Вестн. СибАДИ. 2016. Вып. 5(51). С. 114–124. 13. Немировский Ю.В., Гребенюк Г.И., Ажермачев А.В. Расчет ребристых деревянных конструкций с учетом эффектов разномодульности и нелинейного сопротивления // Строительство. 2007. № 3. С. 4–12. (Изв. высш. учеб. заведений). 14. СП 64.13330.2011. Деревянные конструкции. М., 2011. 88 с. 15. Филин А.П. Прикладная механика твердого деформируемого тела: Сопротивление материалов с элементами теории сплошных сред и строительной механики. Т. 2. М.: Наука, 1978. 616 с. 16. Шапиро Д.М., Агарков А.В., Мельничук Н.Н., Чан Т.Т.В. Нелинейные методы расчета в современном проектировании (на примерах объектов геотехники и мостовых сооружений) // Науч. вестн. Воронеж. гос. архит.-строит. ун-та. Строительство и архитектура. 2009. № 3. С. 85–94. 17. Шмидт А.Б., Дмитриев П.А. Атлас строительных конструкций из клееной древесины и водостойкой фанеры. М.: Изд-во Ассоц. строит. вузов, 2002. 292 с. 18. De La Rosa García P., Escamilla A.C., Nieves González García M. Bending Reinforcement of Timber Beams with Composite Carbon Fiber and Basalt Fiber Materials // Composites Part B: Engineering. 2013. Vol. 55. Pp. 528–536. 19. McGuire W., Gallagher R.H., Ziemian R.D. Matrix Structural Analysis. New York, USA: Wiley, 2000. 474 p. 20. Owen D.R.J., Hinton E. Finite Elements in Plasticity: Theory and Practice. Swansea, U.K.: Pineridge Press, 2013. 640 p. 21. Pischl R., Schickhofer G. The Mur River Wooden Bridge, Austria // Structural Engineering International. 1993. Vol. 3, iss. 4. Pp. 217–219. 22. Poirier E., Moudgil M., Fallahi A., Staub-French S., Tannert T. Design and Construction of a 53-Meter-Tall Timber Building at the University of British Columbia // Proc. WCTE. 2016. 23. Porteous J., Kermani A. Structural Timber Design to Eurocode 5. Wiley-Blackwell Publ., 2013. 638 p. 24. Raftery G.M., Whelan C. Low-Grade Glued Laminated Timber Beams Reinforced Using Improved Arrangements of Bonded-in GFRP Rods // Construction and Building Materials. 2014. Vol. 52. Pp. 209–220. Поступила 30.01.18 Ссылка на английскую версию:Features of Deformation and Destruction of Hybrid Timber Beams
UDC 674.038.3 DOI: 10.17238/issn0536-1036.2018.4.118 Features of Deformation and Destruction of Hybrid Timber Beams Yu.V. Nemirovskiy, Doctor of Physico-Mathematical Sciences, Professor A.I. Boltaev, Postgraduate Student Novosibirsk State University of Architecture and Civil Engineering, ul. Leningradskaya, 113, Novosibirsk, 630008, Russian Federation; e-mail: nemirov@itam.nsc.ru, boltaev_artem@mail.ru The paper presents a problem solution of determining the stress-strain state of hybrid (consisting of different species of wood) wooden beams. The cross-section of the beam is laminated. Each layer can change the shape of the cross-section in a wide range. The physical nonlinearity of the layer deformation curves, as well as their different resistance to tension and compression should be taken into account. In general, a beam experiences a straight cross-bending with tension and compression. The deformation curves for 6 wood species for tension-compression along fibers are compared. The results show that different wood spe-cies resist tension and compression differently: one species works better for tension (can experience greater stresses and strains), the other ‒ for compression. At one stress level, the deformation graphs of different species are located close to each other, while at other levels they significantly diverge. The data of calculations of hybrid bars show significant features of deformation and destruction of hybrid physically non-linear bars in comparison with homogeneous ones (consisting of one species), the material of which follows the Hooke's law. These features include a significant change in the magnitude of the extreme load and maximum deflection when varying the layer species and the possibility of emergence of hidden mechanics of destruction, when ultimate longitudinal strains are achieved in the inner layers of the beam. These features of deformation and destruction of hybrid wooden structures should considered in the process of their production. Keywords: laminated structure, physical nonlinearity, hybrid design, mechanisms of destruction. REFERENCES 1. Arleninov D.K., Buslaev Yu.N., Ignat’yev V.P., Romanov P.G., Chakhov D.K. Konstruktsii iz dereva i plastmass [Construction of Wood and Plastics]. Moscow, Associa-tion of Educational Civil Engineering Institutions of Construction Publ., 2002. 280 p. (In Russ.) 2. Borovikov A.M., Ugolev B.N. Spravochnik po drevesine [Wood Guide]. Moscow, Lesnaya promyshlennost’ Publ., 1989. 296 p. (In Russ.) 3. Bykov V.V. Eksperimental’nye issledovaniya prochnosti i deformativnosti drevesiny sibirskoy listvennitsy pri szhatii i rastyazhenii vdol’ volokon s uchetom dlitel’nogo deystviya nagruzki [Experimental Studies of Ultimate Compressive and Tensile Strength of Siberian Larch Wood Along the Fibers, Taking into Account the Long Load Action]. Stroitel’stvo, 1967, no. 8, pp. 3–8. 4. Gemmerling A.V. Raschet sterzhnevykh system [Calculation of Rod Systems]. Moscow, Stroyizdat Publ., 1974. 208 p. (In Russ.) 5. Grigolyuk E.I., Shalashilin V.I. Problemy nelineynogo deformirovaniya: Metod prodolzheniya resheniya po parametru v nelineynykh zadachakh mekhaniki tverdogo deformiruyemogo tela [Problems of Nonlinear Deformation: the Continuation Method with Respect to a Parameter in Nonlinear Problems of Mechanics of Solids]. Moscow, Nauka Publ., 1988. 232 p. (In Russ.) 6. Karlsen G.G. Issledovaniya prochnosti i deformativnosti drevesiny [Investigation of Strength and Deformability of Wood]. Moscow, Gosstroyizdat Publ., 1956. 172 p. (In Russ.) 7. Kvasnikov E.N. Voprosy dlitel’nogo soprotivleniya drevesiny [Issues of Long-Term Wood Resistance]. Leningrad, Stroyizdat Publ., 1972. 96 p. (In Russ.) 8. Kochenov V.M. Nesushchaya sposobnost’ elementov i soedineniy derevyannykh konstruktsiy [Bearing Capacity of Elements and Joints of Wooden Structures]. Moscow, Stroyizdat Publ., 1953. 320 p. (In Russ.) 9. Nemirovskiy Yu.V. Metod rascheta kompozitnykh sterzhnevykh sistem iz razno-modul’nykh materialov [A Method of Calculation of Composite Rod Systems from Hetero-geneous Materials]. Fundamental’nyye i prikladnyye problemy sovremennoy mekhaniki: materialy V Vseros. nauch. konf. (Tomsk, 3–5 noyab.) [Fundamental and Applied Problems of Modern Mechanics: Proc. 5th All-Russ. Sci. Conf. (Tomsk, 3‒5 November)]. Tomsk, TSU Publ., 2006, pp. 288–290. (In Russ.) 10. Nemirovskiy Yu.V., Boltaev A.I. Metod rascheta derevyannykh stropil’nykh pokrytiy zdaniy. Soobshch. 1. Modelirovanie i obshchie zakonomernosti [Method for Calcu-lating Wooden Roof Coatings of Buildings. Report 1: Modeling and General Patterns]. Stroitel’stvo, 2014, no. 3, pp. 5–13. 11. Nemirovskiy Yu.V., Boltaev A.I. Osobennosti deformirovaniya i razrusheniya derevyannykh kleyenykh mnogoproletnykh balok. Soobshch. 1 [Features of Deformation and Destruction of Wooden Glued Multispan Beams. Report 1]. Stroitel’stvo, 2016, no. 6, pp. 116–126. 12. Nemirovskiy Yu.V., Boltaev A.I. Osobennosti rascheta derevozhelezobetonnogo balochnogo mosta [Calculation of Wood Reinforced Concrete Girder Bridge]. Vestnik SibADI, 2016, no. 5(51), pp. 114–124. 13. Nemirovskiy Yu.V., Grebenyuk G.I., Azhermachev A.V. Raschet rebristykh derevyannykh konstruktsiy s uchetom effektov raznomodul’nosti i nelineynosti sopro-tivleniya [Calculation of Ribbed Wooden Structures Taking into Account the Effects of Heterogeneity and Nonlinearity of Resistance]. Stroitel’stvo, 2007, no. 3, pp. 4–12. 14. SP 64.13330.2011. Derevyannyye konstruktsii [Code of Practice 64.13330.2011. Timber Structures]. Moscow, 2011. 88 p. 15. Filin A.P. Prikladnaya mekhanika tverdogo deformiruemogo tela: Soprotivleniye materialov s elementami teorii sploshnykh sred i stroitel’noy mekhaniki. Tom 2. [Applied Mechanics of Solids: Material Resistance with Elements of Continuum Theory and Struc-tural Mechanics. Vol. 2]. Moscow, Nauka Publ., 1978. 616 p. (In Russ.) 16. Shapiro D.M., Agarkov A.V., Mel’nichuk N.N., Chan T.T.V. Nelineynyye metody rascheta v sovremennom proyektirovanii (na primerakh ob”yektov geotekhniki i mostovykh sooruzheniy) [Non-Linear Methods of Analysis in Modern Designing (by the Example of Geotechnics Objects and Bridgeworks)]. Nauchnyy Vestnik VGASU. Ser.: Stroitel’stvo i Arkhitektura [Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture], 2009, no. 3, pp. 85–94. 17. Shmidt A.B., Dmitriev P.A. Atlas stroitel’nykh konstruktsiy iz kleyenoy drevesiny i vodostoykoy fanery [Atlas of Building Structures Made of Glued Wood and Waterproof Plywood]. Moscow, Association of Educational Civil Engineering Institutions of Construction Publ., 2002. 292 p. (In Russ.) 18. De La Rosa García P., Escamilla A.C., Nieves González García M. Bending Reinforcement of Timber Beams with Composite Carbon Fiber and Basalt Fiber Materials. Composites Part B: Engineering, 2013, vol. 55, pp. 528–536. 19. McGuire W., Gallagher R.H., Ziemian R.D. Matrix Structural Analysis. New York, USA, Wiley, 2000. 474 p. 20. Owen D.R.J., Hinton E. Finite Elements in Plasticity: Theory and Practice. Swansea, U.K., Pineridge Press, 2013. 640 p. 21. Pischl R., Schickhofer G. The Mur River Wooden Bridge, Austria. Structural Engineering International, 1993, vol. 3, iss. 4, pp. 217–219. 22. Poirier E., Moudgil M., Fallahi A., Staub-French S., Tannert T. Design and Con-struction of a 53-Meter-Tall Timber Building at the University of British Columbia. Proc. WCTE, 2016. 23. Porteous J., Kermani A. Structural Timber Design to Eurocode 5. Wiley-Blackwell Publ., 2013. 638 p. 24. Raftery G.M., Whelan C. Low-Grade Glued Laminated Timber Beams Reinforced Using Improved Arrangements of Bonded-in GFRP Rods. Construction and Building Materials, 2014, vol. 52, pp. 209–220.
Received on January 30, 2018
For citation: Nemirovskiy Yu.V., Boltaev A.I. Features of Deformation and Destruction of Hybrid Timber Beams. Lesnoy zhurnal [Forestry journal], 2018, no. 4, pp. 118–131. DOI: 10.17238/issn0536-1036.2018.4.118 |
Электронная подача статей
Журнал награжден «Знаком признания активного поставщика данных 2024 года» ИНДЕКСИРУЕТСЯ В:
|
|
|
|
|
|
|
|
|
|
|
|
|